Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training Cat-recognition with yolov7_tiny_fast_1xb12-40e_cat does not provide bbox and classes #1039

Open
3 tasks done
levrone1987 opened this issue Nov 7, 2024 · 0 comments

Comments

@levrone1987
Copy link

Prerequisite

🐞 Describe the bug

I was trying to run through the tutorial from here:
https://github.com/open-mmlab/mmyolo/blob/main/docs/en/get_started/15_minutes_object_detection.md

I changed the code to use yolov7, and run this command:

python tools/train.py configs/yolov7/yolov7_tiny_fast_1xb12-40e_cat.py

However, when producing the actual bounding boxes and classes in the show_results folder, I only get the label on the left image, and no bounding box / class on the right image.

The command I used:

python tools/test.py configs/yolov7/yolov7_tiny_fast_1xb12-40e_cat.py                      work_dirs/yolov7_tiny_fast_1xb12-40e_cat/epoch_40.pth                      --show-dir show_results

image

Environment

python mmyolo/utils/collect_env.py
/home/mirza/miniconda3/envs/sens-yolo/lib/python3.8/site-packages/torch/cuda/init.py:80: UserWarning: CUDA initialization: CUDA unknown error - this may be due to an incorrectly set up environment, e.g. changing env variable CUDA_VISIBLE_DEVICES after program start. Setting the available devices to be zero. (Triggered internally at /opt/conda/conda-bld/pytorch_1639180588308/work/c10/cuda/CUDAFunctions.cpp:112.)
return torch._C._cuda_getDeviceCount() > 0
sys.platform: linux
Python: 3.8.20 (default, Oct 3 2024, 15:24:27) [GCC 11.2.0]
CUDA available: False
MUSA available: False
numpy_random_seed: 2147483648
GCC: gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
PyTorch: 1.10.1
PyTorch compiling details: PyTorch built with:

  • GCC 7.3
  • C++ Version: 201402
  • Intel(R) oneAPI Math Kernel Library Version 2023.1-Product Build 20230303 for Intel(R) 64 architecture applications
  • Intel(R) MKL-DNN v2.2.3 (Git Hash 7336ca9f055cf1bfa13efb658fe15dc9b41f0740)
  • OpenMP 201511 (a.k.a. OpenMP 4.5)
  • LAPACK is enabled (usually provided by MKL)
  • NNPACK is enabled
  • CPU capability usage: AVX2
  • Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.3, CUDNN_VERSION=8.2.0, CXX_COMPILER=/opt/rh/devtoolset-7/root/usr/bin/c++, CXX_FLAGS= -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.10.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON,

TorchVision: 0.11.2
OpenCV: 4.10.0
MMEngine: 0.10.5
MMCV: 2.0.1
MMDetection: 3.3.0
MMYOLO: 0.6.0+8c4d9dc

Additional information

No response

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant