-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvasicek.py
160 lines (123 loc) · 7.33 KB
/
vasicek.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import numpy as np
import pandas as pd
from term_structure import calculate_instantaneous_forward_rate, calculate_zero_coupon_price
def calculate_vasicek_paths(num_paths: int, num_steps: int, end_time: int, function_zero_coupon_price: callable, mean_drift: float, sigma: float, gamma: float, tolerance: float)->dict:
"""
Simulates a series of stochastic interest rate paths using the Vasicek model.
Args:
num_paths (int): number of paths to simulate.
num_steps (int): number of time steps per path.
end_time (int): end of the modelling window (in years).
(Ex. a modelling window of 50 years means T=50).
function_zero_coupon_price (function): function that calculates the price of a
zero coupon bond issued at time 0 that matures at time t, with a
notional amount 1 and discounted using the assumed term structure.
mean_drift (float): average drift parameter mu of the Vasicek model.
sigma (float): volatility parameter sigma of the Vasicek model.
gamma (float): parameter gamma of the Vasicek model
tolerance (float): size of the increment used for finite
difference approximation.
Returns:
dict: A dictionary containing arrays with time steps, interest rate paths,
and bond prices.
time (array): array of time steps.
R (array): array of interest rate paths with
shape (num_paths, num_steps+1).
M (array): array of bond prices with
shape (num_paths, num_steps+1).
Implemented by Gregor Fabjan from Open-Source Modelling on 13/04/2024.
Original inspiration: https://www.youtube.com/watch?v=BIZdwUDbnDo
"""
# Initial instantaneous forward rate at time t-> 0 (also spot rate at time 0).
# r(0) = f(0,0) = - partial derivative of log(P_mkt(0, tolerance) w.r.t tolerance)
r0 = calculate_instantaneous_forward_rate(tolerance, function_zero_coupon_price, tolerance)
# Generate the single source of random noise.
Z = np.random.normal(0.0, 1.0, [num_paths, num_steps])
# Initialize arrays
# Vector of time moments.
time = np.linspace(0, end_time, num_steps+1)
W = np.zeros([num_paths, num_steps+1])
# Initialize array with interest rate increments
R = np.zeros([num_paths, num_steps+1])
# First interest rate equals the instantaneous forward (spot)
# rate at time 0.
R[:, 0] = r0
dt = end_time/float(num_steps) # Size of increments between two steps
for iTime in range(1, num_steps+1): # For each time increment
# Making sure the samples from the normal distribution have a mean of 0
# and variance 1
if num_paths > 1:
Z[:, iTime-1] = (Z[:, iTime-1]-np.mean(Z[:, iTime-1]))/np.std(Z[:, iTime-1])
# Apply the Euler-Maruyama discretisation scheme for the Vasicek model
# at each time increment.
sd_term = np.power(sigma**2 /(2*gamma)*(1-np.exp(-2*gamma*dt)),0.5)
W[:, iTime] = W[:, iTime-1] + sd_term*Z[:, iTime-1]
noise_term = np.exp(-gamma * dt)
rate_term = mean_drift*(1-np.exp(-gamma*dt))
R[:, iTime] = R[:, iTime-1]*noise_term + rate_term + (W[:, iTime]-W[:, iTime-1])
# Vectorized numeric integration using the Euler integration method .
M = np.exp(-0.5 * (R[:, :-1] + R[:, 1:]) * dt)
M = np.insert(M, 0, 1, axis=1).cumprod(axis=1)
I = 1/M
# Output is a dataframe with time moment, the interest rate path and the price
# of a zero coupon bond issued at time 0 that matures at the selected time
# moment with a notional value of 1.
paths = {"time":time, "R":R, "M":M, "I":I}
return paths
def vasicek_main_calculation(num_paths: int, num_steps: int, end_time: int, mean_drift: float, sigma: float, gamma: float, function_zero_coupon_price: callable, tolerance: float)-> list:
"""
Calculates and plots the prices of zero-coupon bonds (ZCB) calculated
using the Vasicek model`s analytical formula and the Monte Carlo simulation.
Args:
num_paths (int): number of Monte Carlo simulation paths.
NoOfSteps (int): number of time steps per path.
end_time (int): length in years of the modelling window (Ex. 50 years means t=50).
mean_drift (float): average drift parameter mu of the Vasicek model.
sigma (float): volatility parameter sigma of the Vasicek model.
gamma (float): parameter gamma of the Vasicek model
function_zero_coupon_price (function): function that calculates the price of a zero coupon bond issued.
at time 0 that matures at time t, with a notional amount 1 and discounted using
the assumed term structure.
tolerance (float): the size of the increment used for finite difference approximation.
Returns:
t : time increments.
P : average of the sumulated paths.
implied_term_structure : term structure provided as input into the V simulation.
Implemented by Gregor Fabjan from Open-Source Modelling on 13/04/2024.
"""
paths = calculate_vasicek_paths(num_paths, num_steps, end_time, function_zero_coupon_price, mean_drift, sigma, gamma, tolerance)
M = paths["M"]
t = paths["time"]
I = paths["I"]
implied_term_structure = function_zero_coupon_price(t)
# Compare the price of an option on a ZCB from Monte Carlo and the analytical expression
P = np.zeros([num_steps+1])
for i in range(0, num_steps+1):
P[i] = np.mean(M[:, i])
return [t, P, implied_term_structure, M, I]
def set_up_vasicek(asset_id: int, modeling_parameters: dict, zero_coupon_price: callable) -> pd.DataFrame:
num_paths = modeling_parameters["num_paths"] # Number of stochastic scenarios
num_steps = modeling_parameters["num_steps"] # Number of equidistand discrete modelling points (50*12 = 600)
end_time = modeling_parameters["end_time"] # Time horizon in years (A time horizon of 50 years; T=50)
mu = modeling_parameters["mu"] # Vasicek long term mean parameter mu
gamma = modeling_parameters["gamma"] # Vasicek parameter gamma
sigma = modeling_parameters["sigma"] # Vasicek volatility parameter sigma
tolerance = modeling_parameters["tolerance"] # Incremental distance used to calculate for numerical approximation
# of for example the instantaneous spot rate (Ex. 0.01 will use an interval
# of 0.01 as a discreete approximation for a derivative)
type = modeling_parameters["curve_type"]
# Final comparison
[t, P, implied_term_structure, M, I] = vasicek_main_calculation(num_paths, num_steps, end_time, mu, sigma, gamma, zero_coupon_price, tolerance)
run_name = "V-"+str(asset_id)
if type=="I":
outTmp = I
elif type=="D":
outTmp = M
else:
raise ValueError
multi_index_list = []
for scenario in list(range(0,num_paths)):
multi_index_list.append((run_name,scenario))
multi_index = pd.MultiIndex.from_tuples(multi_index_list, names=('Run', 'Scenario_number'))
scenarios = pd.DataFrame(data = outTmp, columns=t, index=multi_index)
return scenarios