-
Notifications
You must be signed in to change notification settings - Fork 800
/
Copy pathenvironment.py
335 lines (302 loc) · 12.6 KB
/
environment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import gym
from gym import spaces
from gym.envs.registration import EnvSpec
import numpy as np
from multiagent.multi_discrete import MultiDiscrete
# environment for all agents in the multiagent world
# currently code assumes that no agents will be created/destroyed at runtime!
class MultiAgentEnv(gym.Env):
metadata = {
'render.modes' : ['human', 'rgb_array']
}
def __init__(self, world, reset_callback=None, reward_callback=None,
observation_callback=None, info_callback=None,
done_callback=None, shared_viewer=True):
self.world = world
self.agents = self.world.policy_agents
# set required vectorized gym env property
self.n = len(world.policy_agents)
# scenario callbacks
self.reset_callback = reset_callback
self.reward_callback = reward_callback
self.observation_callback = observation_callback
self.info_callback = info_callback
self.done_callback = done_callback
# environment parameters
self.discrete_action_space = True
# if true, action is a number 0...N, otherwise action is a one-hot N-dimensional vector
self.discrete_action_input = False
# if true, even the action is continuous, action will be performed discretely
self.force_discrete_action = world.discrete_action if hasattr(world, 'discrete_action') else False
# if true, every agent has the same reward
self.shared_reward = world.collaborative if hasattr(world, 'collaborative') else False
self.time = 0
# configure spaces
self.action_space = []
self.observation_space = []
for agent in self.agents:
total_action_space = []
# physical action space
if self.discrete_action_space:
u_action_space = spaces.Discrete(world.dim_p * 2 + 1)
else:
u_action_space = spaces.Box(low=-agent.u_range, high=+agent.u_range, shape=(world.dim_p,), dtype=np.float32)
if agent.movable:
total_action_space.append(u_action_space)
# communication action space
if self.discrete_action_space:
c_action_space = spaces.Discrete(world.dim_c)
else:
c_action_space = spaces.Box(low=0.0, high=1.0, shape=(world.dim_c,), dtype=np.float32)
if not agent.silent:
total_action_space.append(c_action_space)
# total action space
if len(total_action_space) > 1:
# all action spaces are discrete, so simplify to MultiDiscrete action space
if all([isinstance(act_space, spaces.Discrete) for act_space in total_action_space]):
act_space = MultiDiscrete([[0, act_space.n - 1] for act_space in total_action_space])
else:
act_space = spaces.Tuple(total_action_space)
self.action_space.append(act_space)
else:
self.action_space.append(total_action_space[0])
# observation space
obs_dim = len(observation_callback(agent, self.world))
self.observation_space.append(spaces.Box(low=-np.inf, high=+np.inf, shape=(obs_dim,), dtype=np.float32))
agent.action.c = np.zeros(self.world.dim_c)
# rendering
self.shared_viewer = shared_viewer
if self.shared_viewer:
self.viewers = [None]
else:
self.viewers = [None] * self.n
self._reset_render()
def step(self, action_n):
obs_n = []
reward_n = []
done_n = []
info_n = {'n': []}
self.agents = self.world.policy_agents
# set action for each agent
for i, agent in enumerate(self.agents):
self._set_action(action_n[i], agent, self.action_space[i])
# advance world state
self.world.step()
# record observation for each agent
for agent in self.agents:
obs_n.append(self._get_obs(agent))
reward_n.append(self._get_reward(agent))
done_n.append(self._get_done(agent))
info_n['n'].append(self._get_info(agent))
# all agents get total reward in cooperative case
reward = np.sum(reward_n)
if self.shared_reward:
reward_n = [reward] * self.n
return obs_n, reward_n, done_n, info_n
def reset(self):
# reset world
self.reset_callback(self.world)
# reset renderer
self._reset_render()
# record observations for each agent
obs_n = []
self.agents = self.world.policy_agents
for agent in self.agents:
obs_n.append(self._get_obs(agent))
return obs_n
# get info used for benchmarking
def _get_info(self, agent):
if self.info_callback is None:
return {}
return self.info_callback(agent, self.world)
# get observation for a particular agent
def _get_obs(self, agent):
if self.observation_callback is None:
return np.zeros(0)
return self.observation_callback(agent, self.world)
# get dones for a particular agent
# unused right now -- agents are allowed to go beyond the viewing screen
def _get_done(self, agent):
if self.done_callback is None:
return False
return self.done_callback(agent, self.world)
# get reward for a particular agent
def _get_reward(self, agent):
if self.reward_callback is None:
return 0.0
return self.reward_callback(agent, self.world)
# set env action for a particular agent
def _set_action(self, action, agent, action_space, time=None):
agent.action.u = np.zeros(self.world.dim_p)
agent.action.c = np.zeros(self.world.dim_c)
# process action
if isinstance(action_space, MultiDiscrete):
act = []
size = action_space.high - action_space.low + 1
index = 0
for s in size:
act.append(action[index:(index+s)])
index += s
action = act
else:
action = [action]
if agent.movable:
# physical action
if self.discrete_action_input:
agent.action.u = np.zeros(self.world.dim_p)
# process discrete action
if action[0] == 1: agent.action.u[0] = -1.0
if action[0] == 2: agent.action.u[0] = +1.0
if action[0] == 3: agent.action.u[1] = -1.0
if action[0] == 4: agent.action.u[1] = +1.0
else:
if self.force_discrete_action:
d = np.argmax(action[0])
action[0][:] = 0.0
action[0][d] = 1.0
if self.discrete_action_space:
agent.action.u[0] += action[0][1] - action[0][2]
agent.action.u[1] += action[0][3] - action[0][4]
else:
agent.action.u = action[0]
sensitivity = 5.0
if agent.accel is not None:
sensitivity = agent.accel
agent.action.u *= sensitivity
action = action[1:]
if not agent.silent:
# communication action
if self.discrete_action_input:
agent.action.c = np.zeros(self.world.dim_c)
agent.action.c[action[0]] = 1.0
else:
agent.action.c = action[0]
action = action[1:]
# make sure we used all elements of action
assert len(action) == 0
# reset rendering assets
def _reset_render(self):
self.render_geoms = None
self.render_geoms_xform = None
# render environment
def render(self, mode='human'):
if mode == 'human':
alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
message = ''
for agent in self.world.agents:
comm = []
for other in self.world.agents:
if other is agent: continue
if np.all(other.state.c == 0):
word = '_'
else:
word = alphabet[np.argmax(other.state.c)]
message += (other.name + ' to ' + agent.name + ': ' + word + ' ')
print(message)
for i in range(len(self.viewers)):
# create viewers (if necessary)
if self.viewers[i] is None:
# import rendering only if we need it (and don't import for headless machines)
#from gym.envs.classic_control import rendering
from multiagent import rendering
self.viewers[i] = rendering.Viewer(700,700)
# create rendering geometry
if self.render_geoms is None:
# import rendering only if we need it (and don't import for headless machines)
#from gym.envs.classic_control import rendering
from multiagent import rendering
self.render_geoms = []
self.render_geoms_xform = []
for entity in self.world.entities:
geom = rendering.make_circle(entity.size)
xform = rendering.Transform()
if 'agent' in entity.name:
geom.set_color(*entity.color, alpha=0.5)
else:
geom.set_color(*entity.color)
geom.add_attr(xform)
self.render_geoms.append(geom)
self.render_geoms_xform.append(xform)
# add geoms to viewer
for viewer in self.viewers:
viewer.geoms = []
for geom in self.render_geoms:
viewer.add_geom(geom)
results = []
for i in range(len(self.viewers)):
from multiagent import rendering
# update bounds to center around agent
cam_range = 1
if self.shared_viewer:
pos = np.zeros(self.world.dim_p)
else:
pos = self.agents[i].state.p_pos
self.viewers[i].set_bounds(pos[0]-cam_range,pos[0]+cam_range,pos[1]-cam_range,pos[1]+cam_range)
# update geometry positions
for e, entity in enumerate(self.world.entities):
self.render_geoms_xform[e].set_translation(*entity.state.p_pos)
# render to display or array
results.append(self.viewers[i].render(return_rgb_array = mode=='rgb_array'))
return results
# create receptor field locations in local coordinate frame
def _make_receptor_locations(self, agent):
receptor_type = 'polar'
range_min = 0.05 * 2.0
range_max = 1.00
dx = []
# circular receptive field
if receptor_type == 'polar':
for angle in np.linspace(-np.pi, +np.pi, 8, endpoint=False):
for distance in np.linspace(range_min, range_max, 3):
dx.append(distance * np.array([np.cos(angle), np.sin(angle)]))
# add origin
dx.append(np.array([0.0, 0.0]))
# grid receptive field
if receptor_type == 'grid':
for x in np.linspace(-range_max, +range_max, 5):
for y in np.linspace(-range_max, +range_max, 5):
dx.append(np.array([x,y]))
return dx
# vectorized wrapper for a batch of multi-agent environments
# assumes all environments have the same observation and action space
class BatchMultiAgentEnv(gym.Env):
metadata = {
'runtime.vectorized': True,
'render.modes' : ['human', 'rgb_array']
}
def __init__(self, env_batch):
self.env_batch = env_batch
@property
def n(self):
return np.sum([env.n for env in self.env_batch])
@property
def action_space(self):
return self.env_batch[0].action_space
@property
def observation_space(self):
return self.env_batch[0].observation_space
def step(self, action_n, time):
obs_n = []
reward_n = []
done_n = []
info_n = {'n': []}
i = 0
for env in self.env_batch:
obs, reward, done, _ = env.step(action_n[i:(i+env.n)], time)
i += env.n
obs_n += obs
# reward = [r / len(self.env_batch) for r in reward]
reward_n += reward
done_n += done
return obs_n, reward_n, done_n, info_n
def reset(self):
obs_n = []
for env in self.env_batch:
obs_n += env.reset()
return obs_n
# render environment
def render(self, mode='human', close=True):
results_n = []
for env in self.env_batch:
results_n += env.render(mode, close)
return results_n