You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I'm able to get a summary of the model and while using the adam optimizer, I'm able to train the model. But while using the SGDWithWeightNorm, I'm getting an error.
I'm using:
Python 3.7
tensorflow 2.0
keras 2.3.1
in a conda environment.
I'm using a generator for training: def imageX_generator(): i = 0 while(True): img1 = np.array(Image.open(X_filelist[i])) img1 = img1.astype('float32') img1 /= 255 img1 = np.reshape(img1, (1, 256, 256, 3)) img2 = np.array(Image.open(y_filelist[i])) img2 = img2.astype('float32') img2 /= 255 img2 = np.reshape(img2, (1, 256, 256, 3)) yield (img1, img2) i += 1 if i >= len(X_filelist) : i = 0
and calling it as:
history = model.fit_generator(imageX_generator(),steps_per_epoch=1, epochs=2)
Error:
`RuntimeError Traceback (most recent call last)
in
----> 1 history = model.fit_generator(imageX_generator(),steps_per_epoch=1, epochs=2)
d:\anaconda3\envs\env1\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your ' + object_name + ' call to the ' +
90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
~\Desktop\weightnorm.py in get_updates(self, loss, params)
12 if self.initial_decay > 0:
13 lr *= (1. / (1. + self.decay * self.iterations))
---> 14 self.updates .append(K.update_add(self.iterations, 1))
15
16 # momentum
d:\anaconda3\envs\env1\lib\site-packages\tensorflow_core\python\ops\resource_variable_ops.py in imul(self, unused_other)
1227
1228 def imul(self, unused_other):
-> 1229 raise RuntimeError("Variable *= value not supported. Use "
1230 "var.assign(var * value) to modify the variable or "
1231 "var = var * value to get a new Tensor object.")
RuntimeError: Variable *= value not supported. Use var.assign(var * value) to modify the variable or var = var * value to get a new Tensor object.`
The text was updated successfully, but these errors were encountered:
I'm able to get a summary of the model and while using the adam optimizer, I'm able to train the model. But while using the SGDWithWeightNorm, I'm getting an error.
I'm using:
Python 3.7
tensorflow 2.0
keras 2.3.1
in a conda environment.
I'm using a generator for training:
def imageX_generator(): i = 0 while(True): img1 = np.array(Image.open(X_filelist[i])) img1 = img1.astype('float32') img1 /= 255 img1 = np.reshape(img1, (1, 256, 256, 3)) img2 = np.array(Image.open(y_filelist[i])) img2 = img2.astype('float32') img2 /= 255 img2 = np.reshape(img2, (1, 256, 256, 3)) yield (img1, img2) i += 1 if i >= len(X_filelist) : i = 0
and calling it as:
history = model.fit_generator(imageX_generator(),steps_per_epoch=1, epochs=2)
Error:
`RuntimeError Traceback (most recent call last)
in
----> 1 history = model.fit_generator(imageX_generator(),steps_per_epoch=1, epochs=2)
d:\anaconda3\envs\env1\lib\site-packages\keras\legacy\interfaces.py in wrapper(*args, **kwargs)
89 warnings.warn('Update your
' + object_name + '
call to the ' +90 'Keras 2 API: ' + signature, stacklevel=2)
---> 91 return func(*args, **kwargs)
92 wrapper._original_function = func
93 return wrapper
d:\anaconda3\envs\env1\lib\site-packages\keras\engine\training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
1730 use_multiprocessing=use_multiprocessing,
1731 shuffle=shuffle,
-> 1732 initial_epoch=initial_epoch)
1733
1734 @interfaces.legacy_generator_methods_support
d:\anaconda3\envs\env1\lib\site-packages\keras\engine\training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, validation_freq, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
40
41 do_validation = bool(validation_data)
---> 42 model._make_train_function()
43 if do_validation:
44 model._make_test_function()
d:\anaconda3\envs\env1\lib\site-packages\keras\engine\training.py in _make_train_function(self)
314 training_updates = self.optimizer.get_updates(
315 params=self._collected_trainable_weights,
--> 316 loss=self.total_loss)
317 updates = self.updates + training_updates
318
~\Desktop\weightnorm.py in get_updates(self, loss, params)
12 if self.initial_decay > 0:
13 lr *= (1. / (1. + self.decay * self.iterations))
---> 14 self.updates .append(K.update_add(self.iterations, 1))
15
16 # momentum
d:\anaconda3\envs\env1\lib\site-packages\tensorflow_core\python\ops\resource_variable_ops.py in imul(self, unused_other)
1227
1228 def imul(self, unused_other):
-> 1229 raise RuntimeError("Variable *= value not supported. Use "
1230 "
var.assign(var * value)
to modify the variable or "1231 "
var = var * value
to get a new Tensor object.")RuntimeError: Variable *= value not supported. Use
var.assign(var * value)
to modify the variable orvar = var * value
to get a new Tensor object.`The text was updated successfully, but these errors were encountered: