-
Notifications
You must be signed in to change notification settings - Fork 118
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Weights returned as nan #4
Comments
Hello, I have the same trouble with you. When using the WN is only the decomposition of W into g, v , the classification task is running normally (accurate rate is not high). But when setting g and b according to Parameter_init in the paper the phenomenon of NAN appeared.
` |
same problem here with keras 2 (incorporating the pull request). |
Hi,
I have a simple Keras CNN working fine as it is. When trying to apply weightnorm, either with SGD or Adam, the first updated weights are all always return as NaN, triggering an error.
This is an example of one layer weights just before the model.fit():
{'W_constraint': None, 'b_constraint': None, 'name': 'dense_3', 'activity_regularizer': None, 'trainable': True, 'init': 'glorot_uniform', 'bias': True, 'activation': 'softmax', 'input_dim': None, 'b_regularizer': None, 'W_regularizer': None, 'output_dim': 8} [array([[-1.81446958, -0.74279195, -1.98372281, 1.03149867, -1.33605921, 0.98080444, 1.46184123, -1.90489924], [ 1.74007297, 1.18310583, 0.96353596, -0.49502602, -1.5556761 , 1.71657765, 0.94695097, 2.61784649], [-0.638098 , -1.65658796, 0.45535672, 1.39707041, -0.53299773, -1.73198462, 0.05106336, -0.93136811], [-0.50413573, -0.12023554, -1.1118933 , -1.12377524, 1.9663564 , 1.5819149 , -1.72357309, -0.63662446], [-1.6616931 , 1.57845461, -1.33607149, 1.03262866, 1.02465236, -1.82984507, -1.94427574, 2.13097382], [-0.69643229, -1.69655061, 1.86963248, 1.35395622, 1.43264794, -1.60058153, 1.45158744, 1.88503206], [-0.1455002 , 0.44617018, -0.47829607, -1.31520915, 1.82627797, 1.81214976, -0.27336141, 1.91040981], [-0.78067726, 1.90638936, -1.97633493, -1.061988 , 0.02862636, -0.37745535, 1.65916157, 0.70244253], [-0.21252237, -0.65053529, 0.51744008, 0.68950123, -1.85650849, 1.0682615 , 1.55790281, -0.83147609], [ 0.48371872, -0.85853142, -2.022681 , -1.08805192, 2.06113982, -0.57459891, -1.63607311, -0.83574378], [ 1.05208552, -1.69211721, -0.43760285, 1.03213108, -2.36395407, -1.02809763, -0.806862 , -1.45331335], [-1.12855673, 1.70107543, 1.35683572, -1.20369387, -0.18256012, 2.01939988, 1.03289509, 2.65198541], [ 0.51740509, -0.23014481, 1.95300198, -0.66845942, 0.53607529, -1.01613665, 1.18222928, -0.80191672], [ 0.39752519, 2.14175916, 1.48441279, -1.20377731, -1.87403321, -0.11191524, -1.76513219, 2.63831162], [-1.98938465, -1.2327646 , -0.83744407, -0.64946407, 0.58288223, 2.24985504, -0.09591354, 2.01949072], [-1.42328095, 2.07457638, -1.33132982, -2.08888173, 1.02181983, 1.24852037, 1.10853899, -1.0029546 ], [ 1.75405586, 0.09432141, -1.31112003, -0.0304644 , -1.5135988 , -1.49612296, 1.2762996 , 0.60811853], [-1.64439476, 1.7335813 , -0.80541438, 0.27505419, 0.37458628, 0.72816306, 1.52508533, 1.85929 ], [-0.053883 , -2.13568377, 0.55463415, 0.43602318, 1.61183143, 1.48652506, -2.10601187, -1.08352566], [-1.21685481, 0.41039792, -0.78186649, 1.60308003, 0.99902558, 1.60311925, 1.10065258, 0.0354073 ], [ 2.12806535, 2.14419603, 0.96948087, 0.08199508, -0.84324813, -1.50271273, 0.10528874, -0.873142 ], [-2.15096569, 1.23474431, 1.25909293, -0.44441026, -2.08873248, 0.21763401, -2.12321043, -1.31675696], [ 1.95354533, 1.73437381, 1.38008749, 1.28455055, -0.34766021, -2.20302415, 0.51172131, -1.0840373 ], [ 1.58691943, 1.4111464 , -2.16242433, 1.90826643, -1.84906268, -1.18959498, -1.83963597, -0.12747419], [-0.4401913 , 1.22723794, -1.53341997, 1.43126631, -0.95519918, 0.61142218, 1.61414647, -0.13954096], [-0.63068312, 1.03541517, 2.19619155, -0.71226257, 1.70391488, 2.243999 , 1.81045079, -1.39369321], [ 0.22400506, 0.17860785, -1.42312717, 0.74690318, 0.66468042, -1.62544048, 1.75782633, 1.03065538], [ 2.11632895, 2.12409687, 1.10879564, 1.02491808, -0.37185353, 0.13456514, -1.70119786, -0.14151937], [-0.58504152, 2.31315374, 0.15611638, 1.2988714 , 1.33584034, 0.29542622, -1.18843138, 0.54929841], [ 0.84831744, -2.25127149, -0.42340177, -0.99950933, -0.33759385, 0.73217863, -1.75246251, -0.20512277], [ 1.16061187, -1.81038654, -1.50839853, 1.90214121, -0.33019581, -1.18630064, -0.29908586, -1.13772762], [-0.85308987, -0.56074762, -0.22539173, -0.95188016, -0.25569537, 1.48671508, -0.4336201 , 2.44569182]], dtype=float32), array([-0.75807816, -0.68674487, -0.79544491, -0.73615742, -0.74876821, -0.73147482, -0.74654377, -0.72675341], dtype=float32)]
and these are the weights after 1 epoch:
[[ nan nan nan ..., nan nan nan] [ nan nan nan ..., nan nan nan] [ nan nan nan ..., nan nan nan] ..., [ nan nan nan ..., nan nan nan] [ nan nan nan ..., nan nan nan] [ nan nan nan ..., nan nan nan]]
It´s the same for all layers.
The data_based_init() works fine, by the way.
Any clue what could be happening?
I am using TF v12 with CUDA 8 and a GPU Geforce 1080
The text was updated successfully, but these errors were encountered: