Skip to content

Files

Latest commit

779ffc8 · Nov 8, 2024

History

History

face_detection_yunet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jun 8, 2023
Jun 4, 2024
Sep 17, 2021
Nov 8, 2024
Feb 29, 2024
Jun 4, 2024
Jun 6, 2023
Sep 18, 2023
Nov 6, 2024
Jul 18, 2024

YuNet

YuNet is a light-weight, fast and accurate face detection model, which achieves 0.834(AP_easy), 0.824(AP_medium), 0.708(AP_hard) on the WIDER Face validation set.

Notes:

Results of accuracy evaluation with tools/eval.

Models Easy AP Medium AP Hard AP
YuNet 0.8844 0.8656 0.7503
YuNet block 0.8845 0.8652 0.7504
YuNet quant 0.8810 0.8629 0.7503

*: 'quant' stands for 'quantized'. **: 'block' stands for 'blockwise quantized'.

Demo

Python

Run the following command to try the demo:

# detect on camera input
python demo.py
# detect on an image
python demo.py --input /path/to/image -v

# get help regarding various parameters
python demo.py --help

C++

Install latest OpenCV and CMake >= 3.24.0 to get started with:

# A typical and default installation path of OpenCV is /usr/local
cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation .
cmake --build build

# detect on camera input
./build/demo
# detect on an image
./build/demo -i=/path/to/image -v
# get help messages
./build/demo -h

Example outputs

webcam demo

largest selfie

License

All files in this directory are licensed under MIT License.

Reference

Citation

If you use YuNet in your work, please use the following BibTeX entries:

@article{wu2023yunet,
  title={Yunet: A tiny millisecond-level face detector},
  author={Wu, Wei and Peng, Hanyang and Yu, Shiqi},
  journal={Machine Intelligence Research},
  volume={20},
  number={5},
  pages={656--665},
  year={2023},
  publisher={Springer}
}