-
Notifications
You must be signed in to change notification settings - Fork 129
/
alphazero.py
429 lines (396 loc) · 21.3 KB
/
alphazero.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import copy
from collections import namedtuple
from typing import List, Dict, Tuple
import numpy as np
import torch.distributions
import torch.nn.functional as F
import torch.optim as optim
from ding.policy.base_policy import Policy
from ding.torch_utils import to_device
from ding.utils import POLICY_REGISTRY
from ding.utils.data import default_collate
from easydict import EasyDict
from lzero.policy import configure_optimizers
@POLICY_REGISTRY.register('alphazero')
class AlphaZeroPolicy(Policy):
"""
Overview:
The policy class for AlphaZero.
"""
# The default_config for AlphaZero policy.
config = dict(
# (bool) Whether to use torch.compile method to speed up our model, which required torch>=2.0.
torch_compile=False,
# (bool) Whether to use TF32 for our model.
tensor_float_32=False,
model=dict(
# (tuple) The stacked obs shape.
observation_shape=(3, 6, 6),
# (int) The number of res blocks in AlphaZero model.
num_res_blocks=1,
# (int) The number of channels of hidden states in AlphaZero model.
num_channels=32,
),
# (bool) Whether to enable the sampled-based algorithm (e.g. Sampled EfficientZero)
# this variable is used in ``collector``.
sampled_algo=False,
# (bool) Whether to enable the gumbel-based algorithm (e.g. Gumbel Muzero)
gumbel_algo=False,
# (bool) Whether to use multi-gpu training.
multi_gpu=False,
# (bool) Whether to use cuda for network.
cuda=False,
# (int) How many updates(iterations) to train after collector's one collection.
# Bigger "update_per_collect" means bigger off-policy.
# collect data -> update policy-> collect data -> ...
# For different env, we have different episode_length,
# we usually set update_per_collect = collector_env_num * episode_length / batch_size * reuse_factor.
# If we set update_per_collect=None, we will set update_per_collect = collected_transitions_num * cfg.policy.replay_ratio automatically.
update_per_collect=None,
# (float) The ratio of the collected data used for training. Only effective when ``update_per_collect`` is not None.
replay_ratio=0.25,
# (int) Minibatch size for one gradient descent.
batch_size=256,
# (str) Optimizer for training policy network. ['SGD', 'Adam', 'AdamW']
optim_type='SGD',
# (float) Learning rate for training policy network. Initial lr for manually decay schedule.
learning_rate=0.2,
# (float) Weight decay for training policy network.
weight_decay=1e-4,
# (float) One-order Momentum in optimizer, which stabilizes the training process (gradient direction).
momentum=0.9,
# (float) The maximum constraint value of gradient norm clipping.
grad_clip_value=10,
# (float) The weight of value loss.
value_weight=1.0,
# (int) The number of environments used in collecting data.
collector_env_num=8,
# (int) The number of environments used in evaluating policy.
evaluator_env_num=3,
# (bool) Whether to use piecewise constant learning rate decay.
# i.e. lr: 0.2 -> 0.02 -> 0.002
piecewise_decay_lr_scheduler=True,
# (int) The number of final training iterations to control lr decay, which is only used for manually decay.
threshold_training_steps_for_final_lr=int(5e5),
# (bool) Whether to use manually temperature decay.
# i.e. temperature: 1 -> 0.5 -> 0.25
manual_temperature_decay=False,
# (int) The number of final training iterations to control temperature, which is only used for manually decay.
threshold_training_steps_for_final_temperature=int(1e5),
# (float) The fixed temperature value for MCTS action selection, which is used to control the exploration.
# The larger the value, the more exploration. This value is only used when manual_temperature_decay=False.
fixed_temperature_value=0.25,
mcts=dict(
# (int) The number of simulations to perform at each move.
num_simulations=50,
# (int) The maximum number of moves to make in a game.
max_moves=512, # for chess and shogi, 722 for Go.
# (float) The alpha value used in the Dirichlet distribution for exploration at the root node of the search tree.
root_dirichlet_alpha=0.3,
# (float) The noise weight at the root node of the search tree.
root_noise_weight=0.25,
# (int) The base constant used in the PUCT formula for balancing exploration and exploitation during tree search.
pb_c_base=19652,
# (float) The initialization constant used in the PUCT formula for balancing exploration and exploitation during tree search.
pb_c_init=1.25,
),
other=dict(replay_buffer=dict(
replay_buffer_size=int(1e6),
save_episode=False,
)),
)
def default_model(self) -> Tuple[str, List[str]]:
"""
Overview:
Return this algorithm default model setting for demonstration.
Returns:
- model_type (:obj:`str`): The model type used in this algorithm, which is registered in ModelRegistry.
- import_names (:obj:`List[str]`): The model class path list used in this algorithm.
"""
return 'AlphaZeroModel', ['lzero.model.alphazero_model']
def _init_learn(self) -> None:
assert self._cfg.optim_type in ['SGD', 'Adam', 'AdamW'], self._cfg.optim_type
if self._cfg.optim_type == 'SGD':
self._optimizer = optim.SGD(
self._model.parameters(),
lr=self._cfg.learning_rate,
momentum=self._cfg.momentum,
weight_decay=self._cfg.weight_decay,
)
elif self._cfg.optim_type == 'Adam':
self._optimizer = optim.Adam(
self._model.parameters(), lr=self._cfg.learning_rate, weight_decay=self._cfg.weight_decay
)
elif self._cfg.optim_type == 'AdamW':
self._optimizer = configure_optimizers(
model=self._model,
weight_decay=self._cfg.weight_decay,
learning_rate=self._cfg.learning_rate,
device_type=self._cfg.device
)
if self._cfg.piecewise_decay_lr_scheduler:
from torch.optim.lr_scheduler import LambdaLR
max_step = self._cfg.threshold_training_steps_for_final_lr
# NOTE: the 1, 0.1, 0.01 is the decay rate, not the lr.
lr_lambda = lambda step: 1 if step < max_step * 0.5 else (0.1 if step < max_step else 0.01) # noqa
self.lr_scheduler = LambdaLR(self._optimizer, lr_lambda=lr_lambda)
# Algorithm config
self._value_weight = self._cfg.value_weight
self._entropy_weight = self._cfg.entropy_weight
# Main and target models
self._learn_model = self._model
# TODO(pu): test the effect of torch 2.0
if self._cfg.torch_compile:
self._learn_model = torch.compile(self._learn_model)
def _forward_learn(self, inputs: Dict[str, torch.Tensor]) -> Dict[str, float]:
inputs = default_collate(inputs)
if self._cuda:
inputs = to_device(inputs, self._device)
self._learn_model.train()
state_batch = inputs['obs']['observation']
mcts_probs = inputs['probs']
reward = inputs['reward']
state_batch = state_batch.to(device=self._device, dtype=torch.float)
mcts_probs = mcts_probs.to(device=self._device, dtype=torch.float)
reward = reward.to(device=self._device, dtype=torch.float)
action_probs, values = self._learn_model.compute_policy_value(state_batch)
policy_log_probs = torch.log(action_probs)
# calculate policy entropy, for monitoring only
entropy = torch.mean(-torch.sum(action_probs * policy_log_probs, 1))
entropy_loss = -entropy
# ============
# policy loss
# ============
policy_loss = -torch.mean(torch.sum(mcts_probs * policy_log_probs, 1))
# ============
# value loss
# ============
value_loss = F.mse_loss(values.view(-1), reward)
total_loss = self._value_weight * value_loss + policy_loss + self._entropy_weight * entropy_loss
self._optimizer.zero_grad()
total_loss.backward()
if self._cfg.multi_gpu:
self.sync_gradients(self._learn_model)
total_grad_norm_before_clip = torch.nn.utils.clip_grad_norm_(
list(self._model.parameters()),
max_norm=self._cfg.grad_clip_value,
)
self._optimizer.step()
if self._cfg.piecewise_decay_lr_scheduler is True:
self.lr_scheduler.step()
# =============
# after update
# =============
return {
'cur_lr': self._optimizer.param_groups[0]['lr'],
'total_loss': total_loss.item(),
'policy_loss': policy_loss.item(),
'value_loss': value_loss.item(),
'entropy_loss': entropy_loss.item(),
'total_grad_norm_before_clip': total_grad_norm_before_clip.item(),
'collect_mcts_temperature': self.collect_mcts_temperature,
}
def _init_collect(self) -> None:
"""
Overview:
Collect mode init method. Called by ``self.__init__``. Initialize the collect model and MCTS utils.
"""
self._get_simulation_env()
self._collect_model = self._model
if self._cfg.mcts_ctree:
import sys
sys.path.append('/Users/your_user_name/code/LightZero/lzero/mcts/ctree/ctree_alphazero/build')
import mcts_alphazero
self._collect_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves, self._cfg.mcts.num_simulations,
self._cfg.mcts.pb_c_base,
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha,
self._cfg.mcts.root_noise_weight, self.simulate_env)
else:
if self._cfg.sampled_algo:
from lzero.mcts.ptree.ptree_az_sampled import MCTS
else:
from lzero.mcts.ptree.ptree_az import MCTS
self._collect_mcts = MCTS(self._cfg.mcts, self.simulate_env)
self.collect_mcts_temperature = 1
@torch.no_grad()
def _forward_collect(self, obs: Dict, temperature: float = 1) -> Dict[str, torch.Tensor]:
"""
Overview:
The forward function for collecting data in collect mode. Use real env to execute MCTS search.
Arguments:
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \
corresponding obs in this timestep.
- temperature (:obj:`float`): The temperature for MCTS search.
Returns:
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \
the corresponding policy output in this timestep, including action, probs and so on.
"""
self.collect_mcts_temperature = temperature
ready_env_id = list(obs.keys())
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id}
# If 'katago_game_state' is in the observation of the given environment ID, it's value is used.
# If it's not present (which will raise a KeyError), None is used instead.
# This approach is taken to maintain compatibility with the handling of 'katago' related parts of 'alphazero_mcts_ctree' in Go.
katago_game_state = {env_id: obs[env_id].get('katago_game_state', None) for env_id in ready_env_id}
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id}
output = {}
self._policy_model = self._collect_model
for env_id in ready_env_id:
state_config_for_simulation_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id],
init_state=init_state[env_id],
katago_policy_init=False,
katago_game_state=katago_game_state[env_id]))
action, mcts_probs = self._collect_mcts.get_next_action(state_config_for_simulation_env_reset, self._policy_value_fn, self.collect_mcts_temperature, True)
output[env_id] = {
'action': action,
'probs': mcts_probs,
}
return output
def _init_eval(self) -> None:
"""
Overview:
Evaluate mode init method. Called by ``self.__init__``. Initialize the eval model and MCTS utils.
"""
self._get_simulation_env()
if self._cfg.mcts_ctree:
import sys
sys.path.append('/Users/your_user_name/code/LightZero/lzero/mcts/ctree/ctree_alphazero/build')
import mcts_alphazero
# TODO(pu): how to set proper num_simulations for evaluation
self._eval_mcts = mcts_alphazero.MCTS(self._cfg.mcts.max_moves,
min(800, self._cfg.mcts.num_simulations * 4),
self._cfg.mcts.pb_c_base,
self._cfg.mcts.pb_c_init, self._cfg.mcts.root_dirichlet_alpha,
self._cfg.mcts.root_noise_weight, self.simulate_env)
else:
if self._cfg.sampled_algo:
from lzero.mcts.ptree.ptree_az_sampled import MCTS
else:
from lzero.mcts.ptree.ptree_az import MCTS
mcts_eval_config = copy.deepcopy(self._cfg.mcts)
# TODO(pu): how to set proper num_simulations for evaluation
mcts_eval_config.num_simulations = min(800, mcts_eval_config.num_simulations * 4)
self._eval_mcts = MCTS(mcts_eval_config, self.simulate_env)
self._eval_model = self._model
def _forward_eval(self, obs: Dict) -> Dict[str, torch.Tensor]:
"""
Overview:
The forward function for evaluating the current policy in eval mode, similar to ``self._forward_collect``.
Arguments:
- obs (:obj:`Dict`): The dict of obs, the key is env_id and the value is the \
corresponding obs in this timestep.
Returns:
- output (:obj:`Dict[str, torch.Tensor]`): The dict of output, the key is env_id and the value is the \
the corresponding policy output in this timestep, including action, probs and so on.
"""
ready_env_id = list(obs.keys())
init_state = {env_id: obs[env_id]['board'] for env_id in ready_env_id}
# If 'katago_game_state' is in the observation of the given environment ID, it's value is used.
# If it's not present (which will raise a KeyError), None is used instead.
# This approach is taken to maintain compatibility with the handling of 'katago' related parts of 'alphazero_mcts_ctree' in Go.
katago_game_state = {env_id: obs[env_id].get('katago_game_state', None) for env_id in ready_env_id}
start_player_index = {env_id: obs[env_id]['current_player_index'] for env_id in ready_env_id}
output = {}
self._policy_model = self._eval_model
for env_id in ready_env_id:
state_config_for_simulation_env_reset = EasyDict(dict(start_player_index=start_player_index[env_id],
init_state=init_state[env_id],
katago_policy_init=False,
katago_game_state=katago_game_state[env_id]))
action, mcts_probs = self._eval_mcts.get_next_action(
state_config_for_simulation_env_reset, self._policy_value_fn, 1.0, False
)
output[env_id] = {
'action': action,
'probs': mcts_probs,
}
return output
def _get_simulation_env(self):
if self._cfg.simulation_env_id == 'tictactoe':
from zoo.board_games.tictactoe.envs.tictactoe_env import TicTacToeEnv
if self._cfg.simulation_env_config_type == 'play_with_bot':
from zoo.board_games.tictactoe.config.tictactoe_alphazero_bot_mode_config import \
tictactoe_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.tictactoe.config.tictactoe_alphazero_sp_mode_config import \
tictactoe_alphazero_config
else:
raise NotImplementedError
self.simulate_env = TicTacToeEnv(tictactoe_alphazero_config.env)
elif self._cfg.simulation_env_id == 'gomoku':
from zoo.board_games.gomoku.envs.gomoku_env import GomokuEnv
if self._cfg.simulation_env_config_type == 'play_with_bot':
from zoo.board_games.gomoku.config.gomoku_alphazero_bot_mode_config import gomoku_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.gomoku.config.gomoku_alphazero_sp_mode_config import gomoku_alphazero_config
else:
raise NotImplementedError
self.simulate_env = GomokuEnv(gomoku_alphazero_config.env)
elif self._cfg.simulation_env_id == 'connect4':
from zoo.board_games.connect4.envs.connect4_env import Connect4Env
if self._cfg.simulation_env_config_type == 'play_with_bot':
from zoo.board_games.connect4.config.connect4_alphazero_bot_mode_config import connect4_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.connect4.config.connect4_alphazero_sp_mode_config import connect4_alphazero_config
else:
raise NotImplementedError
self.simulate_env = Connect4Env(connect4_alphazero_config.env)
elif self._cfg.simulation_env_id == 'chess':
from zoo.board_games.chess.envs.chess_lightzero_env import ChessLightZeroEnv
if self._cfg.simulation_env_config_type == 'play_with_bot':
from zoo.board_games.chess.config.chess_alphazero_bot_mode_config import chess_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.chess.config.chess_alphazero_sp_mode_config import chess_alphazero_config
else:
raise NotImplementedError
self.simulate_env = ChessLightZeroEnv(chess_alphazero_config.env)
elif self._cfg.simulation_env_id == 'dummy_any_game':
from zoo.board_games.tictactoe.envs.dummy_any_game_env import AnyGameEnv
if self._cfg.simulation_env_config_type == 'single_player_mode':
from zoo.board_games.tictactoe.config.dummy_any_game_alphazero_single_player_mode_config import \
dummy_any_game_alphazero_config
elif self._cfg.simulation_env_config_type == 'self_play':
from zoo.board_games.tictactoe.config.dummy_any_game_alphazero_self_play_mode_config import \
dummy_any_game_alphazero_config
else:
raise NotImplementedError
self.simulate_env = AnyGameEnv(dummy_any_game_alphazero_config.env)
else:
raise NotImplementedError
@torch.no_grad()
def _policy_value_fn(self, env: 'Env') -> Tuple[Dict[int, np.ndarray], float]: # noqa
legal_actions = env.legal_actions
current_state, current_state_scale = env.current_state()
current_state_scale = torch.from_numpy(current_state_scale).to(
device=self._device, dtype=torch.float
).unsqueeze(0)
with torch.no_grad():
action_probs, value = self._policy_model.compute_policy_value(current_state_scale)
action_probs_dict = dict(zip(legal_actions, action_probs.squeeze(0)[legal_actions].detach().cpu().numpy()))
return action_probs_dict, value.item()
def _monitor_vars_learn(self) -> List[str]:
"""
Overview:
Register the variables to be monitored in learn mode. The registered variables will be logged in
tensorboard according to the return value ``_forward_learn``.
"""
return super()._monitor_vars_learn() + [
'cur_lr', 'total_loss', 'policy_loss', 'value_loss', 'entropy_loss', 'total_grad_norm_before_clip',
'collect_mcts_temperature'
]
def _process_transition(self, obs: Dict, model_output: Dict[str, torch.Tensor], timestep: namedtuple) -> Dict:
"""
Overview:
Generate the dict type transition (one timestep) data from policy learning.
"""
return {
'obs': obs,
'next_obs': timestep.obs,
'action': model_output['action'],
'probs': model_output['probs'],
'reward': timestep.reward,
'done': timestep.done,
}
def _get_train_sample(self, data):
# be compatible with DI-engine Policy class
pass