-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprecision_test.py
172 lines (162 loc) · 7.28 KB
/
precision_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import unittest
from impacts_estimation.impacts_estimation import estimate_impacts
import numpy as np
import json
import copy
PRODUCTS = [
# https://ciqual.anses.fr/#/aliments/31032
# https://agribalyse.ademe.fr/app/aliments/31032
# https://world.openfoodfacts.org/api/v0/product/3017620422003.json?fields=code,product_name,ingredients,nutriments,ecoscore_data
{
"name": "Nutella",
"prod": {
"ingredients": [
{
"mass": 37.8,
"id": "en:condensed-milk",
"percent": 37.8,
"rank": 1
},
{
"mass": 28.7,
"id": "en:dark-chocolate",
"percent": 28.7,
"rank": 2
},
{
"mass": 18.8,
"id": "en:butter",
"percent": 18.8,
"rank": 3
},
{
"mass": 14.7,
"id": "en:beans",
"percent": 14.7,
"rank": 4
}
],
"nutriments": {
"proteins_100g": 5.02,
"carbohydrates_100g": 57.9,
"fat_100g": 32.4,
"fiber_100g": 3.23,
"salt_100g": 0.12,
"sugars_100g": 56.2,
"saturated-fat_100g": 9.18
},
},
"truth": {
"impacts": {
"ef": 0.61477708,
"co2": 8.7770996,
},
},
},
# https://ciqual.anses.fr/#/aliments/11168/aioli-sauce-(garlic-and-olive-oil-mayonnaise)-prepacked
# https://agribalyse.ademe.fr/app/aliments/11168
# https://world.openfoodfacts.org/api/v0/product/3660603004828.json?fields=code,product_name,ingredients,nutriments,ecoscore_data
{
"name": "Aioli",
"prod": {
"ingredients": [
{
"mass": 72.8,
"id": "en:olive-oil",
"percent": 73.00441235459286,
"rank": 1
},
{
"mass": 10.8,
"id": "en:garlic",
"percent": 10.830324909747292,
"rank": 2
},
{
"mass": 8.290000000000001,
"id": "en:egg-yolk",
"percent": 8.313277176093061,
"rank": 3
},
{
"mass": 7.829999999999999,
"id": "en:lemon-juice",
"percent": 7.851985559566786,
"rank": 4
}
],
"nutriments": {
"proteins_100g": 1.13,
"carbohydrates_100g": 4.7,
"fat_100g": 41.0,
"fiber_100g": 0.42,
"salt_100g": 1.85,
"sugars_100g": 3.14
},
},
"truth": {
"impacts": {
"ef": 0.4800103,
"co2": 1.1042559,
},
},
},
]
DEFAULT_FORCE_TOTAL_MASS_USED=False
DEFAULT_USE_PERCENTAGES=False
DEFAULT_BREAK_FIRST_INGREDIENT=False
class TestPrecision(unittest.TestCase):
def printPrecision(self, force_total_mass_used=DEFAULT_FORCE_TOTAL_MASS_USED, use_percentages=DEFAULT_USE_PERCENTAGES, break_first_ingredient=DEFAULT_BREAK_FIRST_INGREDIENT):
for product in PRODUCTS:
product_copy = copy.deepcopy(product)
true_ingredients = {}
for ingredient in product_copy["prod"]["ingredients"]:
true_ingredients[ingredient["id"]] = ingredient["percent"]
for idx, ingredient in enumerate(product_copy["prod"]["ingredients"]):
if break_first_ingredient and idx == 0:
ingredient["id"] = "en:unicorn-droppings"
if not use_percentages:
del ingredient["percent"]
impact_categories = ['EF single score',
'Climate change']
total_mass_used = None
if force_total_mass_used:
total_mass_used = 100
impact_estimation_result = estimate_impacts(
seed=1,
product=product_copy["prod"],
distributions_as_result=True,
total_mass_used=total_mass_used,
impact_names=impact_categories)
best_mixture_error_sum = 0.0
best_mixture_idx = np.argmax(impact_estimation_result["confidence_score_distribution"])
for ingredient, percentage in impact_estimation_result["recipes"][best_mixture_idx].items():
error = percentage
if ingredient in true_ingredients:
error = percentage - true_ingredients[ingredient]
best_mixture_error_sum = error * error
best_mixture_l2_error = best_mixture_error_sum ** 0.5
# 10 * since impact_estimation_result is for 100g while the AgriBalyse impacts are for 1000g.
estimated_ef = 10 * impact_estimation_result['impact_distributions']['EF single score'][best_mixture_idx]
estimated_co2 = 10 * impact_estimation_result['impact_distributions']['Climate change'][best_mixture_idx]
ef_error = abs(estimated_ef - product_copy['truth']['impacts']['ef']) / product_copy['truth']['impacts']['ef']
co2_error = abs(estimated_co2 - product_copy['truth']['impacts']['co2']) / product_copy['truth']['impacts']['co2']
print(f" * Product: {product['name']}")
print(f" * Likeliest mixture L2: {best_mixture_l2_error}")
print(f" * Likeliest mixture EF error ratio: {ef_error}")
print(f" * Likeliest mixture CO2 error ratio: {co2_error}")
def testSynthesisAndImpacts(self):
print(f"Percentages: {DEFAULT_USE_PERCENTAGES}, first ingredient unknown: {DEFAULT_BREAK_FIRST_INGREDIENT}")
for force_total_mass_used in [True, False]:
print(f" * Force total mass used to 100g: {force_total_mass_used}")
self.printPrecision(force_total_mass_used=force_total_mass_used)
print(f"First ingredient unknown: {DEFAULT_BREAK_FIRST_INGREDIENT}, force total mass used to 100g: {DEFAULT_FORCE_TOTAL_MASS_USED}")
for use_percentages in [True, False]:
print(f" * Percentages: {use_percentages}")
self.printPrecision(use_percentages=use_percentages)
print(f"Force total mass used to 100g: {DEFAULT_FORCE_TOTAL_MASS_USED}, percentages: {DEFAULT_USE_PERCENTAGES}")
for break_first_ingredient in [True, False]:
print(f" * First ingredient unknown: {break_first_ingredient}")
self.printPrecision(break_first_ingredient=break_first_ingredient)
if __name__ == '__main__':
unittest.main()