-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_pretrain.py
311 lines (257 loc) · 13.7 KB
/
main_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright (c) 2022 Alpha-VL
# --------------------------------------------------------
# References:
# timm: https://github.com/rwightman/pytorch-image-models/tree/master/timm
# DeiT: https://github.com/facebookresearch/deit
# MAE: https://github.com/facebookresearch/mae
# --------------------------------------------------------
import argparse
import datetime
import json
import numpy as np
import os
import time
from pathlib import Path
import torch
import torch.backends.cudnn as cudnn
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
#assert timm.__version__ == "0.3.2" # version check
import timm.optim.optim_factory as optim_factory
import util.misc as misc
from util.misc import NativeScalerWithGradNormCount as NativeScaler
from model import models_dconvmae, models_convmae, models_mae, models_dmae
from engine_pretrain import train_one_epoch, evaluate_pretrain, \
train_one_epoch_corrupt, evaluate_pretrain_corrupt
from util.dataset_us import CorruptDataset
def get_args_parser():
parser = argparse.ArgumentParser('ConvMAE pre-training', add_help=False)
parser.add_argument('--batch_size', default=256, type=int,
help='Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus')
parser.add_argument('--epochs', default=12000, type=int)
parser.add_argument('--accum_iter', default=1, type=int,
help='Accumulate gradient iterations (for increasing the effective batch size under memory constraints)')
# Model parameters
# vanilla MAE: mae_vit_base_patch16, mae_vit_large_patch16, mae_vit_huge_patch14
# vanilla ConvMAE: convmae_convvit_base_patch16, convmae_convvit_large_patch16, convmae_convvit_huge_patch16
# Deblurring MAE: dmae_vit_base_patch16, dmae_vit_large_patch16, dmae_vit_huge_patch14
# Deblurring ConvMAE: dconvmae_convvit_base_patch16, dconvmae_convvit_large_patch16, dconvmae_convvit_huge_patch16
parser.add_argument('--model', default='', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='Masking ratio (percentage of removed patches).')
parser.add_argument('--norm_pix_loss', action='store_true', default=True,
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# Optimizer parameters
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=None, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--blr', type=float, default=1.5e-4, metavar='LR',
help='base learning rate: absolute_lr = base_lr * total_batch_size / 256')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=40, metavar='N',
help='epochs to warmup LR')
# Dataset parameters
parser.add_argument('--data_path_blurred', default='', type=str,
help='blurred dataset path')
parser.add_argument('--data_path_orig', default='', type=str,
help='original dataset path')
parser.add_argument('--num_train', type=int, default=-1,
help='number of samples for training, -1 means all')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no_pin_mem', action='store_false', dest='pin_mem')
parser.set_defaults(pin_mem=True)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--local_rank', default=-1, type=int)
parser.add_argument('--dist_on_itp', action='store_true')
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
return parser
def main(args):
misc.init_distributed_mode(args)
print('job dir: {}'.format(os.path.dirname(os.path.realpath(__file__))))
print("{}".format(args).replace(', ', ',\n'))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + misc.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
cudnn.benchmark = True
# simple augmentation
transform_train = transforms.Compose([
transforms.RandomResizedCrop(args.input_size, scale=(0.2, 1.0), interpolation=3), # 3 is bicubic
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
transform_val = transforms.Compose([
# transforms.RandomResizedCrop(args.input_size, scale=(0.2, 1.0), interpolation=3), # 3 is bicubic
# transforms.RandomHorizontalFlip(),
transforms.Resize([args.input_size, args.input_size]),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# vanilla MAE or ConvMAE
if args.model in ['convmae_convvit_base_patch16', 'convmae_convvit_large_patch16', 'convmae_convvit_huge_patch16',
'mae_vit_base_patch16', 'mae_vit_large_patch16', 'mae_vit_huge_patch14' ]:
dataset_train = datasets.ImageFolder(os.path.join(args.data_path_blurred, 'train'), transform=transform_train)
dataset_val = datasets.ImageFolder(os.path.join(args.data_path_blurred, 'val'), transform=transform_val)
# Deblurring MAE or ConvMAE
else:
dataset_train = CorruptDataset(args.data_path_blurred, args.data_path_orig, args.input_size, is_train=True)
dataset_val = CorruptDataset(args.data_path_blurred, args.data_path_orig, args.input_size, is_train=False)
# number of images for pretraining, -1 means all.
if args.num_train != -1:
dataset_train, _ = torch.utils.data.random_split(dataset_train,
[args.num_train, len(dataset_train) - args.num_train])
print ("train length:", len(dataset_train))
print ("val length:", len(dataset_val))
if True: # args.distributed:
num_tasks = misc.get_world_size()
global_rank = misc.get_rank()
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
print("Sampler_train = %s" % str(sampler_train))
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False
)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
if global_rank == 0 and args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
log_writer = SummaryWriter(log_dir=args.output_dir)
else:
log_writer = None
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False
)
# define the model
if args.model in [ "mae_vit_base_patch16", "mae_vit_large_patch16", "mae_vit_huge_patch16" ]:
model = models_mae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
elif args.model in ['convmae_convvit_base_patch16', 'convmae_convvit_large_patch16', 'convmae_convvit_huge_patch16' ]:
model = models_convmae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
elif args.model in ['dmae_vit_base_patch16', "dmae_vit_large_patch16", "dmae_vit_huge_patch16" ]:
model = models_dmae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
elif args.model in ['dconvmae_convvit_base_patch16', "dconvmae_convvit_large_patch16",
"dconvmae_convvit_huge_patch16" ]:
model = models_dconvmae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss)
model.to(device)
num_gpu = list(range(torch.cuda.device_count()))
print ("num_gpu:", num_gpu)
model_without_ddp = model
print("Model = %s" % str(model_without_ddp))
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
if args.lr is None: # only base_lr is specified
args.lr = args.blr * eff_batch_size / 256
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
print("actual lr: %.2e" % args.lr)
print("accumulate grad iterations: %d" % args.accum_iter)
print("effective batch size: %d" % eff_batch_size)
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu], find_unused_parameters=True)
model_without_ddp = model.module
# following timm: set wd as 0 for bias and norm layers
param_groups = optim_factory.add_weight_decay(model_without_ddp, args.weight_decay)
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
print(optimizer)
loss_scaler = NativeScaler()
misc.load_model(args=args, model_without_ddp=model_without_ddp, optimizer=optimizer, loss_scaler=loss_scaler)
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
best_mae = 1000000
best_epoch = -1
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
data_loader_train.sampler.set_epoch(epoch)
data_loader_val.sampler.set_epoch(epoch)
# vanilla MAE or ConvMAE
if args.model in ['convmae_convvit_base_patch16',
'convmae_convvit_large_patch16',
'convmae_convvit_huge_patch16',
'mae_vit_base_patch16', 'mae_vit_large_patch16', 'mae_vit_huge_patch16' ]:
train_stats = train_one_epoch(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if (epoch+1) % 10 == 0:
test_stats = evaluate_pretrain(data_loader_val, model, device, args)
# deblurring MAE or ConvMAE
else:
train_stats = train_one_epoch_corrupt(
model, data_loader_train,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if (epoch+1) % 10 == 0:
test_stats = evaluate_pretrain_corrupt(data_loader_val ,model, device, args)
if (epoch+1) % 10 == 0:
if test_stats['loss'] < best_mae:
# if best_mae != 1000000 and best_epoch != -1 and misc.is_main_process():
# old_path = args.output_dir + "/checkpoint-" + str(best_epoch) + ".pth"
# os.remove(old_path)
best_mae = test_stats['loss']
best_epoch = epoch
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
if args.output_dir and ( (epoch+1) % 10 == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch)
if (epoch+1) % 10 == 0:
print (test_stats)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'val_{k}': v for k, v in test_stats.items()},
'best epoch': best_epoch,
'epoch': epoch, }
else:
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, }
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
args = get_args_parser()
args = args.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)