Skip to content

Latest commit

 

History

History
441 lines (326 loc) · 16.8 KB

README.md

File metadata and controls

441 lines (326 loc) · 16.8 KB

Batch Integration

Remove unwanted batch effects from scRNA-seq data while retaining biologically meaningful variation.

Repository: openproblems-bio/task_batch_integration

Description

As single-cell technologies advance, single-cell datasets are growing both in size and complexity. Especially in consortia such as the Human Cell Atlas, individual studies combine data from multiple labs, each sequencing multiple individuals possibly with different technologies. This gives rise to complex batch effects in the data that must be computationally removed to perform a joint analysis. These batch integration methods must remove the batch effect while not removing relevant biological information. Currently, over 200 tools exist that aim to remove batch effects scRNA-seq datasets [@zappia2018exploring]. These methods balance the removal of batch effects with the conservation of nuanced biological information in different ways. This abundance of tools has complicated batch integration method choice, leading to several benchmarks on this topic [@luecken2020benchmarking; @tran2020benchmark; @chazarragil2021flexible; @mereu2020benchmarking]. Yet, benchmarks use different metrics, method implementations and datasets. Here we build a living benchmarking task for batch integration methods with the vision of improving the consistency of method evaluation.

In this task we evaluate batch integration methods on their ability to remove batch effects in the data while conserving variation attributed to biological effects. As input, methods require either normalised or unnormalised data with multiple batches and consistent cell type labels. The batch integrated output can be a feature matrix, a low dimensional embedding and/or a neighbourhood graph. The respective batch-integrated representation is then evaluated using sets of metrics that capture how well batch effects are removed and whether biological variance is conserved. We have based this particular task on the latest, and most extensive benchmark of single-cell data integration methods.

Authors & contributors

name roles
Michaela Mueller maintainer, author
Malte Luecken author
Daniel Strobl author
Robrecht Cannoodt contributor
Scott Gigante contributor
Kai Waldrant contributor
Nartin Kim contributor

API

flowchart TB
  file_common_dataset("<a href='https://github.com/openproblems-bio/task_batch_integration#file-format-common-dataset'>Common Dataset</a>")
  comp_process_dataset[/"<a href='https://github.com/openproblems-bio/task_batch_integration#component-type-data-processor'>Data processor</a>"/]
  file_dataset("<a href='https://github.com/openproblems-bio/task_batch_integration#file-format-dataset'>Dataset</a>")
  file_solution("<a href='https://github.com/openproblems-bio/task_batch_integration#file-format-solution'>Solution</a>")
  comp_control_method[/"<a href='https://github.com/openproblems-bio/task_batch_integration#component-type-control-method'>Control method</a>"/]
  comp_method[/"<a href='https://github.com/openproblems-bio/task_batch_integration#component-type-method'>Method</a>"/]
  comp_process_integration[/"<a href='https://github.com/openproblems-bio/task_batch_integration#component-type-process-integration'>Process integration</a>"/]
  comp_metric[/"<a href='https://github.com/openproblems-bio/task_batch_integration#component-type-metric'>Metric</a>"/]
  file_integrated("<a href='https://github.com/openproblems-bio/task_batch_integration#file-format-integration'>Integration</a>")
  file_integrated_processed("<a href='https://github.com/openproblems-bio/task_batch_integration#file-format-processed-integration-output'>Processed integration output</a>")
  file_score("<a href='https://github.com/openproblems-bio/task_batch_integration#file-format-score'>Score</a>")
  file_common_dataset---comp_process_dataset
  comp_process_dataset-->file_dataset
  comp_process_dataset-->file_solution
  file_dataset---comp_control_method
  file_dataset---comp_method
  file_dataset---comp_process_integration
  file_solution---comp_control_method
  file_solution---comp_metric
  comp_control_method-->file_integrated
  comp_method-->file_integrated
  comp_process_integration-->file_integrated_processed
  comp_metric-->file_score
  file_integrated---comp_process_integration
  file_integrated_processed---comp_metric
Loading

File format: Common Dataset

A subset of the common dataset.

Example file: resources_test/common/cxg_immune_cell_atlas/dataset.h5ad

Format:

AnnData object
 obs: 'cell_type', 'batch'
 var: 'hvg', 'hvg_score', 'feature_name', 'feature_id'
 obsm: 'X_pca'
 obsp: 'knn_distances', 'knn_connectivities'
 layers: 'counts', 'normalized'
 uns: 'dataset_id', 'dataset_name', 'dataset_url', 'dataset_reference', 'dataset_summary', 'dataset_description', 'dataset_organism', 'normalization_id', 'knn'

Data structure:

Slot Type Description
obs["cell_type"] string Cell type information.
obs["batch"] string Batch information.
var["hvg"] boolean Whether or not the feature is considered to be a ‘highly variable gene’.
var["hvg_score"] double A ranking of the features by hvg.
var["feature_name"] string A human-readable name for the feature, usually a gene symbol.
var["feature_id"] string A database identifier for the feature, usually an ENSEMBL ID.
obsm["X_pca"] double The resulting PCA embedding.
obsp["knn_distances"] double K nearest neighbors distance matrix.
obsp["knn_connectivities"] double K nearest neighbors connectivities matrix.
layers["counts"] integer Raw counts.
layers["normalized"] double Normalized expression values.
uns["dataset_id"] string A unique identifier for the dataset.
uns["dataset_name"] string Nicely formatted name.
uns["dataset_url"] string (Optional) Link to the original source of the dataset.
uns["dataset_reference"] string (Optional) Bibtex reference of the paper in which the dataset was published.
uns["dataset_summary"] string Short description of the dataset.
uns["dataset_description"] string Long description of the dataset.
uns["dataset_organism"] string (Optional) The organism of the sample in the dataset.
uns["normalization_id"] string Which normalization was used.
uns["knn"] object (Optional) Supplementary K nearest neighbors data.

Component type: Data processor

A label projection dataset processor.

Arguments:

Name Type Description
--input file A subset of the common dataset.
--output_dataset file (Output) Unintegrated AnnData HDF5 file.
--output_solution file (Output) Uncensored dataset containing the true labels.
--hvgs integer (Optional) NA. Default: 2000.

File format: Dataset

Unintegrated AnnData HDF5 file.

Example file: resources_test/task_batch_integration/cxg_immune_cell_atlas/dataset.h5ad

Format:

AnnData object
 obs: 'cell_type', 'batch'
 var: 'hvg', 'hvg_score', 'feature_name', 'feature_id'
 obsm: 'X_pca'
 obsp: 'knn_distances', 'knn_connectivities'
 layers: 'counts', 'normalized'
 uns: 'dataset_id', 'normalization_id', 'dataset_organism', 'knn'

Data structure:

Slot Type Description
obs["cell_type"] string Cell type information.
obs["batch"] string Batch information.
var["hvg"] boolean Whether or not the feature is considered to be a ‘highly variable gene’.
var["hvg_score"] double A ranking of the features by hvg.
var["feature_name"] string A human-readable name for the feature, usually a gene symbol.
var["feature_id"] string A database identifier for the feature, usually an ENSEMBL ID.
obsm["X_pca"] double The resulting PCA embedding.
obsp["knn_distances"] double K nearest neighbors distance matrix.
obsp["knn_connectivities"] double K nearest neighbors connectivities matrix.
layers["counts"] integer Raw counts.
layers["normalized"] double Normalized expression values.
uns["dataset_id"] string A unique identifier for the dataset.
uns["normalization_id"] string Which normalization was used.
uns["dataset_organism"] string (Optional) The organism of the sample in the dataset.
uns["knn"] object Supplementary K nearest neighbors data.

File format: Solution

Uncensored dataset containing the true labels.

Example file: resources_test/task_batch_integration/cxg_immune_cell_atlas/solution.h5ad

Format:

AnnData object
 obs: 'cell_type', 'batch'
 var: 'feature_name', 'feature_id', 'hvg', 'hvg_score', 'batch_hvg'
 obsm: 'X_pca'
 obsp: 'knn_distances', 'knn_connectivities'
 layers: 'counts', 'normalized'
 uns: 'dataset_id', 'dataset_name', 'dataset_url', 'dataset_reference', 'dataset_summary', 'dataset_description', 'dataset_organism', 'normalization_id', 'knn'

Data structure:

Slot Type Description
obs["cell_type"] string Cell type information.
obs["batch"] string Batch information.
var["feature_name"] string A human-readable name for the feature, usually a gene symbol.
var["feature_id"] string A database identifier for the feature, usually an ENSEMBL ID.
var["hvg"] boolean Whether or not the feature is considered to be a ‘highly variable gene’.
var["hvg_score"] double A ranking of the features by hvg.
var["batch_hvg"] boolean Whether or not the feature is considered to be a batch-aware ‘highly variable gene’.
obsm["X_pca"] double The resulting PCA embedding.
obsp["knn_distances"] double K nearest neighbors distance matrix.
obsp["knn_connectivities"] double K nearest neighbors connectivities matrix.
layers["counts"] integer Raw counts.
layers["normalized"] double Normalized expression values.
uns["dataset_id"] string A unique identifier for the dataset.
uns["dataset_name"] string Nicely formatted name.
uns["dataset_url"] string (Optional) Link to the original source of the dataset.
uns["dataset_reference"] string (Optional) Bibtex reference of the paper in which the dataset was published.
uns["dataset_summary"] string Short description of the dataset.
uns["dataset_description"] string Long description of the dataset.
uns["dataset_organism"] string (Optional) The organism of the sample in the dataset.
uns["normalization_id"] string Which normalization was used.
uns["knn"] object Supplementary K nearest neighbors data.

Component type: Control method

A control method for the batch integration task.

Arguments:

Name Type Description
--input_dataset file Unintegrated AnnData HDF5 file.
--input_solution file Uncensored dataset containing the true labels.
--output file (Output) An integrated AnnData dataset.

Component type: Method

A method for the batch integration task.

Arguments:

Name Type Description
--input file Unintegrated AnnData HDF5 file.
--output file (Output) An integrated AnnData dataset.

Component type: Process integration

Process output from an integration method to the format expected by metrics

Arguments:

Name Type Description
--input_dataset file Unintegrated AnnData HDF5 file.
--input_integrated file An integrated AnnData dataset.
--expected_method_types string NA.
--expected_method_types string NA.
--expected_method_types string NA.
--output file (Output) An integrated AnnData dataset with additional outputs.

Component type: Metric

A metric for evaluating batch integration methods.

Arguments:

Name Type Description
--input_integrated file An integrated AnnData dataset with additional outputs.
--input_solution file Uncensored dataset containing the true labels.
--output file (Output) Metric score file.

File format: Integration

An integrated AnnData dataset.

Example file: resources_test/task_batch_integration/cxg_immune_cell_atlas/integrated.h5ad

Description:

Must contain at least one of:

  • Feature: the corrected_counts layer
  • Embedding: the X_emb obsm
  • Graph: the connectivities and distances obsp

Format:

AnnData object
 obsm: 'X_emb'
 obsp: 'connectivities', 'distances'
 layers: 'corrected_counts'
 uns: 'dataset_id', 'normalization_id', 'dataset_organism', 'method_id', 'neighbors'

Data structure:

Slot Type Description
obsm["X_emb"] double (Optional) Embedding output - 2D coordinate matrix.
obsp["connectivities"] double (Optional) Graph output - neighbor connectivities matrix.
obsp["distances"] double (Optional) Graph output - neighbor distances matrix.
layers["corrected_counts"] double (Optional) Feature output - corrected counts.
uns["dataset_id"] string A unique identifier for the dataset.
uns["normalization_id"] string Which normalization was used.
uns["dataset_organism"] string (Optional) The organism of the sample in the dataset.
uns["method_id"] string A unique identifier for the method.
uns["neighbors"] object (Optional) Supplementary K nearest neighbors data.

File format: Processed integration output

An integrated AnnData dataset with additional outputs.

Example file: resources_test/task_batch_integration/cxg_immune_cell_atlas/integrated_processed.h5ad

Description:

Must contain at least one of:

  • Feature: the corrected_counts layer
  • Embedding: the X_emb obsm
  • Graph: the connectivities and distances obsp

The Graph should always be present, but the Feature and Embedding are optional.

Format:

AnnData object
 obsm: 'X_emb', 'clustering'
 obsp: 'connectivities', 'distances'
 layers: 'corrected_counts'
 uns: 'dataset_id', 'normalization_id', 'dataset_organism', 'method_id', 'neighbors'

Data structure:

Slot Type Description
obsm["X_emb"] double (Optional) Embedding output - 2D coordinate matrix.
obsm["clustering"] integer Leiden clustering results at different resolutions.
obsp["connectivities"] double Graph output - neighbor connectivities matrix.
obsp["distances"] double Graph output - neighbor distances matrix.
layers["corrected_counts"] double (Optional) Feature output - corrected counts.
uns["dataset_id"] string A unique identifier for the dataset.
uns["normalization_id"] string Which normalization was used.
uns["dataset_organism"] string (Optional) The organism of the sample in the dataset.
uns["method_id"] string A unique identifier for the method.
uns["neighbors"] object Supplementary K nearest neighbors data.

File format: Score

Metric score file

Example file: score.h5ad

Format:

AnnData object
 uns: 'dataset_id', 'normalization_id', 'method_id', 'metric_ids', 'metric_values'

Data structure:

Slot Type Description
uns["dataset_id"] string A unique identifier for the dataset.
uns["normalization_id"] string Which normalization was used.
uns["method_id"] string A unique identifier for the method.
uns["metric_ids"] string One or more unique metric identifiers.
uns["metric_values"] double The metric values obtained for the given prediction. Must be of same length as ‘metric_ids’.