-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathords_db_mysql_slices.py
168 lines (137 loc) · 3.88 KB
/
ords_db_mysql_slices.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#!/usr/bin/env python3
import polars as pl
from funcs import *
# MYSQL database functions.
# Slices the data to produce useful subsets for, e.g., data viz.
# Writes the dataframes to csv and json format files.
# Events - date range is arbitrary, amend or omit.
def slice_events():
sql = f"""
SELECT
id,
data_provider,
event_date,
group_identifier,
country
FROM `{tablename}`
WHERE event_date BETWEEN '2018' AND '2022'
ORDER BY event_date, id
"""
dfsub = pl.DataFrame(
dbfuncs.mysql_query_fetchall(sql)
)
write_to_files(dfsub, "events")
# Products and repairs.
def slice_repairs():
sql = f"""
SELECT
id,
product_age,
year_of_manufacture,
repair_status,
repair_barrier_if_end_of_life
FROM `{tablename}`
WHERE `product_age` > 0
ORDER BY product_age, id
"""
dfsub = pl.DataFrame(dbfuncs.mysql_query_fetchall(sql)).fill_null("")
write_to_files(dfsub, "repairs")
# Year of manufacture.
def slice_year_of_manufacture():
sql = f"""
SELECT
product_category,
MIN(year_of_manufacture) AS 'earliest',
MAX(year_of_manufacture) AS 'latest',
ROUND(AVG(year_of_manufacture),0) AS 'average'
FROM `{tablename}`
WHERE year_of_manufacture > ''
GROUP BY product_category
ORDER BY product_category
"""
dfsub = pl.DataFrame(dbfuncs.mysql_query_fetchall(sql))
write_to_files(dfsub, "year_of_manufacture", sample=0)
# Product age.
# 0 usually means < 1 year old.
# Value can be float, e.g. 1.5 = 1 year and 6 months.
def slice_product_age():
sql = f"""
SELECT
product_category,
MIN(product_age) AS 'newest',
MAX(product_age) AS 'oldest',
ROUND(AVG(product_age),1) AS 'average'
FROM `{tablename}`
WHERE product_age > 0
GROUP BY product_category
ORDER BY product_category
"""
dfsub = pl.DataFrame(dbfuncs.mysql_query_fetchall(sql))
write_to_files(dfsub, "product_age", sample=0)
# Product categories.
def slice_categories():
sql = f"""
SELECT
id,
partner_product_category,
product_category,
repair_status
FROM `{tablename}`
ORDER BY product_category, id
"""
dfsub = pl.DataFrame(dbfuncs.mysql_query_fetchall(sql))
write_to_files(dfsub, "categories")
# Item types.
def slice_item_types():
sql = f"""
SELECT
t1.product_category,
t1.item_type,
COUNT(*) as records
FROM (
SELECT
product_category,
TRIM(IF(INSTR(partner_product_category, '~'),
SUBSTRING_INDEX(partner_product_category, '~', -1),
partner_product_category)) as item_type
FROM `{tablename}`
) t1
GROUP BY product_category, item_type
ORDER BY product_category, records DESC
"""
dfsub = pl.DataFrame(dbfuncs.mysql_query_fetchall(sql))
write_to_files(dfsub, "item_types")
# Countries and groups.
def slice_countries():
countries = pl.read_csv(f"{cfg.DATA_DIR}/iso_country_codes.csv")
sql = f"""
SELECT
country as iso,
group_identifier as `group`,
COUNT(*) as records
FROM `{tablename}`
GROUP BY country, group_identifier
ORDER BY country, group_identifier
"""
dfsub = pl.DataFrame(dbfuncs.mysql_query_fetchall(sql))
dfsub = dfsub.join(countries, on="iso", how="left")
write_to_files(dfsub, "countries")
# Set sample to a fraction to return a subset of results.
# Can be useful for testing, e.g. data visualisation.
def write_to_files(dfsub, suffix, sample=0):
if sample:
dfsub = dfsub.sample(fraction=sample)
path = f"{cfg.OUT_DIR}/{tablename}_{suffix}.csv"
dfsub.write_csv(path)
print(path)
if __name__ == "__main__":
logger = cfg.init_logger(__file__)
dbfuncs.dbvars = cfg.get_dbvars()
tablename = cfg.get_envvar("ORDS_DATA")
slice_events()
slice_repairs()
slice_year_of_manufacture()
slice_product_age()
slice_categories()
slice_item_types()
slice_countries()