forked from wjn922/ReferFormer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
opts.py
139 lines (126 loc) · 8.48 KB
/
opts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse
def get_args_parser():
parser = argparse.ArgumentParser('ReferFormer training and inference scripts.', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=5e-5, type=float)
parser.add_argument('--lr_backbone_names', default=['backbone.0'], type=str, nargs='+')
parser.add_argument('--lr_text_encoder', default=1e-5, type=float)
parser.add_argument('--lr_text_encoder_names', default=['text_encoder'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_names', default=['reference_points', 'sampling_offsets'], type=str, nargs='+')
parser.add_argument('--lr_linear_proj_mult', default=1.0, type=float)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--weight_decay', default=5e-4, type=float)
parser.add_argument('--epochs', default=10, type=int)
parser.add_argument('--lr_drop', default=[6, 8], type=int, nargs='+')
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
# load the pretrained weights
parser.add_argument('--pretrained_weights', type=str, default=None,
help="Path to the pretrained model.")
# Variants of Deformable DETR
parser.add_argument('--with_box_refine', default=False, action='store_true')
parser.add_argument('--two_stage', default=False, action='store_true') # NOTE: must be false
# * Backbone
# ["resnet50", "resnet101", "swin_t_p4w7", "swin_s_p4w7", "swin_b_p4w7", "swin_l_p4w7"]
# ["video_swin_t_p4w7", "video_swin_s_p4w7", "video_swin_b_p4w7"]
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--backbone_pretrained', default=None, type=str,
help="if use swin backbone and train from scratch, the path to the pretrained weights")
parser.add_argument('--use_checkpoint', action='store_true', help='whether use checkpoint for swin/video swin backbone')
parser.add_argument('--dilation', action='store_true', # DC5
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
parser.add_argument('--num_feature_levels', default=4, type=int, help='number of feature levels')
# * Transformer
parser.add_argument('--enc_layers', default=4, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=4, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=256, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_frames', default=5, type=int,
help="Number of clip frames for training")
parser.add_argument('--num_queries', default=5, type=int,
help="Number of query slots, all frames share the same queries")
parser.add_argument('--dec_n_points', default=4, type=int)
parser.add_argument('--enc_n_points', default=4, type=int)
parser.add_argument('--pre_norm', action='store_true')
# for text
parser.add_argument('--freeze_text_encoder', action='store_true') # default: False
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
parser.add_argument('--mask_dim', default=256, type=int,
help="Size of the mask embeddings (dimension of the dynamic mask conv)")
parser.add_argument('--controller_layers', default=3, type=int,
help="Dynamic conv layer number")
parser.add_argument('--dynamic_mask_channels', default=8, type=int,
help="Dynamic conv final channel number")
parser.add_argument('--no_rel_coord', dest='rel_coord', action='store_false',
help="Disables relative coordinates")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=2, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
parser.add_argument('--set_cost_mask', default=2, type=float,
help="mask coefficient in the matching cost")
parser.add_argument('--set_cost_dice', default=5, type=float,
help="mask coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=2, type=float)
parser.add_argument('--dice_loss_coef', default=5, type=float)
parser.add_argument('--cls_loss_coef', default=2, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--eos_coef', default=0.1, type=float,
help="Relative classification weight of the no-object class")
parser.add_argument('--focal_alpha', default=0.25, type=float)
# dataset parameters
# ['ytvos', 'davis', 'a2d', 'jhmdb', 'refcoco', 'refcoco+', 'refcocog', 'all']
# 'all': using the three ref datasets for pretraining
parser.add_argument('--dataset_file', default='ytvos', help='Dataset name')
parser.add_argument('--coco_path', type=str, default='data/coco')
parser.add_argument('--ytvos_path', type=str, default='data/ref-youtube-vos')
parser.add_argument('--davis_path', type=str, default='data/ref-davis')
parser.add_argument('--a2d_path', type=str, default='data/a2d_sentences')
parser.add_argument('--jhmdb_path', type=str, default='data/jhmdb_sentences')
parser.add_argument('--max_skip', default=3, type=int, help="max skip frame number")
parser.add_argument('--max_size', default=640, type=int, help="max size for the frame")
parser.add_argument('--binary', action='store_true')
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', default='output',
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--eval', action='store_true')
parser.add_argument('--num_workers', default=4, type=int)
# test setting
parser.add_argument('--threshold', default=0.5, type=float) # binary threshold for mask
parser.add_argument('--ngpu', default=8, type=int, help='gpu number when inference for ref-ytvos and ref-davis')
parser.add_argument('--split', default='valid', type=str, choices=['valid', 'test'])
parser.add_argument('--visualize', action='store_true', help='whether visualize the masks during inference')
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--cache_mode', default=False, action='store_true', help='whether to cache images on memory')
return parser