Face detector based on MobileNetV2 as a backbone with a multiple SSD head for indoor and outdoor scenes shot by a front-facing camera. During the training of this model, training images were resized to 256x256.
Metric | Value |
---|---|
AP (WIDER) | 86.74% |
GFlops | 0.786 |
MParams | 1.828 |
Source framework | PyTorch* |
Average Precision (AP) is defined as an area under the precision/recall curve. All numbers were evaluated by taking into account only faces bigger than 64 x 64 pixels.
Image, name: image
, shape: 1, 3, 256, 256
in the format B, C, H, W
, where:
B
- batch sizeC
- number of channelsH
- image heightW
- image width
Expected color order: BGR
.
The net outputs blob with shape: 1, 1, 200, 7
in the format 1, 1, N, 7
, where N
is the number of detected
bounding boxes. Each detection has the format [image_id
, label
, conf
, x_min
, y_min
, x_max
, y_max
], where:
image_id
- ID of the image in the batchlabel
- predicted class ID (0 - face)conf
- confidence for the predicted class- (
x_min
,y_min
) - coordinates of the top left bounding box corner - (
x_max
,y_max
) - coordinates of the bottom right bounding box corner
The OpenVINO Training Extensions provide a training pipeline, allowing to fine-tune the model on custom dataset.
The model can be used in the following demos provided by the Open Model Zoo to show its capabilities:
[*] Other names and brands may be claimed as the property of others.