|
| 1 | +# OpenVINO™ Training Extensions {#ote_documentation} |
| 2 | + |
| 3 | + |
| 4 | + |
| 5 | + |
| 6 | + |
| 7 | + |
| 8 | +OpenVINO™ Training Extensions (OTE) provide a suite of advanced algorithms to train |
| 9 | +Deep Learning models and convert them using the [OpenVINO™ |
| 10 | +toolkit](https://software.intel.com/en-us/openvino-toolkit) for optimized |
| 11 | +inference. It allows you to export and convert the models to the needed format. OTE independently create and train the model. It is open-sourced and available on [GitHub](https://github.com/openvinotoolkit/training_extensions). |
| 12 | + |
| 13 | +## Detailed Workflow |
| 14 | + |
| 15 | + |
| 16 | +1. To start working with OTE, prepare and annotate your dataset. For example, on CVAT. |
| 17 | + |
| 18 | +2. OTE train the model, using training interface, and evaluate the model quality on your dataset, using evaluation and inference interfaces. |
| 19 | + |
| 20 | +Note: prepare a separate dataset or split the dataset you have for more accurate quality evaluation. |
| 21 | + |
| 22 | +3. Having successful evaluation results received, you have an opportunity to deploy your model or continue optimizing it, using NNCF and POT. For more information about these frameworks, go to [Optimization Guide](https://docs.openvino.ai/nightly/openvino_docs_model_optimization_guide.html). |
| 23 | + |
| 24 | +If the results are unsatisfactory, add datasets and perform the same steps, starting with dataset annotation. |
| 25 | + |
| 26 | +## OTE Components |
| 27 | +* [OTE SDK](https://github.com/openvinotoolkit/training_extensions/tree/master/ote_sdk) |
| 28 | +* [OTE CLI](https://github.com/openvinotoolkit/training_extensions/tree/master/ote_cli) |
| 29 | +* [OTE Algorithms](https://github.com/openvinotoolkit/training_extensions/tree/master/external) |
| 30 | + |
| 31 | +## Get Started |
| 32 | +## Prerequisites |
| 33 | +* Ubuntu 18.04 / 20.04 |
| 34 | +* Python 3.8+ |
| 35 | +* [CUDA Toolkit 11.1](https://developer.nvidia.com/cuda-11.1.1-download-archive) - for training on GPU |
| 36 | +In order to get started with OpenVINO™ Training Extensions click [here](https://github.com/openvinotoolkit/training_extensions/tree/master/QUICK_START_GUIDE.md). |
| 37 | + |
| 38 | +## Installation |
| 39 | + |
| 40 | +1. Clone repository in the working directory by running the following: |
| 41 | + ``` |
| 42 | + git clone https://github.com/openvinotoolkit/training_extensions.git |
| 43 | + cd training_extensions |
| 44 | + git checkout -b develop origin/develop |
| 45 | + git submodule update --init --recursive |
| 46 | + ``` |
| 47 | +
|
| 48 | +2. Install prerequisites by running the following: |
| 49 | + ``` |
| 50 | + sudo apt-get install python3-pip python3-venv |
| 51 | + ``` |
| 52 | +
|
| 53 | +3. Search for available scripts that create python virtual environments for different task types: |
| 54 | + ```bash |
| 55 | + find external/ -name init_venv.sh |
| 56 | + ``` |
| 57 | + |
| 58 | + Sample output: |
| 59 | + ``` |
| 60 | + external/mmdetection/init_venv.sh |
| 61 | + external/mmsegmentation/init_venv.sh |
| 62 | + external/deep-object-reid/init_venv.sh |
| 63 | + ``` |
| 64 | + |
| 65 | +4. Create, activate Object Detection virtual environment, and install `ote_cli`: |
| 66 | + ``` |
| 67 | + ./external/mmdetection/init_venv.sh det_venv |
| 68 | + source det_venv/bin/activate |
| 69 | + pip3 install -e ote_cli/ |
| 70 | + ``` |
| 71 | +To learn more about OTE CLI commands go to [GitHub](https://github.com/openvinotoolkit/training_extensions/blob/master/QUICK_START_GUIDE.md). |
| 72 | + |
| 73 | +## Tutorials |
| 74 | +[Object Detection](https://github.com/openvinotoolkit/training_extensions/blob/master/ote_cli/notebooks/train.ipynb) |
| 75 | + |
| 76 | +## Contribution |
| 77 | +If you want to contribute, refer to [Contributing guide](https://github.com/openvinotoolkit/training_extensions/blob/master/CONTRIBUTING.md) before starting work on a pull request. |
| 78 | + |
| 79 | +Deep Learning Deployment Toolkit is licensed under [Apache License Version 2.0](https://github.com/openvinotoolkit/training_extensions/blob/master/LICENSE). |
| 80 | +By contributing to the project, you agree to the license and copyright terms therein |
| 81 | +and release your contribution under these terms. |
0 commit comments