Skip to content

Commit 6919ef8

Browse files
committed
Merge branch 'develop' into vsaltykovx/add_mmdetection_input_parameters_validation
2 parents ef9ffce + a4b4263 commit 6919ef8

File tree

81 files changed

+32546
-534
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

81 files changed

+32546
-534
lines changed

OTE_landing_page.md

+81
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,81 @@
1+
# OpenVINO™ Training Extensions {#ote_documentation}
2+
3+
![python](https://img.shields.io/badge/python-3.8%2B-green)
4+
![black](https://img.shields.io/badge/code%20style-black-000000.svg)
5+
![mypy](https://img.shields.io/badge/%20type_checker-mypy-%231674b1?style=flat)
6+
![openvino](https://img.shields.io/badge/openvino-2021.4-purple)
7+
8+
OpenVINO™ Training Extensions (OTE) provide a suite of advanced algorithms to train
9+
Deep Learning models and convert them using the [OpenVINO™
10+
toolkit](https://software.intel.com/en-us/openvino-toolkit) for optimized
11+
inference. It allows you to export and convert the models to the needed format. OTE independently create and train the model. It is open-sourced and available on [GitHub](https://github.com/openvinotoolkit/training_extensions).
12+
13+
## Detailed Workflow
14+
![](training_extensions_framework.png)
15+
16+
1. To start working with OTE, prepare and annotate your dataset. For example, on CVAT.
17+
18+
2. OTE train the model, using training interface, and evaluate the model quality on your dataset, using evaluation and inference interfaces.
19+
20+
Note: prepare a separate dataset or split the dataset you have for more accurate quality evaluation.
21+
22+
3. Having successful evaluation results received, you have an opportunity to deploy your model or continue optimizing it, using NNCF and POT. For more information about these frameworks, go to [Optimization Guide](https://docs.openvino.ai/nightly/openvino_docs_model_optimization_guide.html).
23+
24+
If the results are unsatisfactory, add datasets and perform the same steps, starting with dataset annotation.
25+
26+
## OTE Components
27+
* [OTE SDK](https://github.com/openvinotoolkit/training_extensions/tree/master/ote_sdk)
28+
* [OTE CLI](https://github.com/openvinotoolkit/training_extensions/tree/master/ote_cli)
29+
* [OTE Algorithms](https://github.com/openvinotoolkit/training_extensions/tree/master/external)
30+
31+
## Get Started
32+
## Prerequisites
33+
* Ubuntu 18.04 / 20.04
34+
* Python 3.8+
35+
* [CUDA Toolkit 11.1](https://developer.nvidia.com/cuda-11.1.1-download-archive) - for training on GPU
36+
In order to get started with OpenVINO™ Training Extensions click [here](https://github.com/openvinotoolkit/training_extensions/tree/master/QUICK_START_GUIDE.md).
37+
38+
## Installation
39+
40+
1. Clone repository in the working directory by running the following:
41+
```
42+
git clone https://github.com/openvinotoolkit/training_extensions.git
43+
cd training_extensions
44+
git checkout -b develop origin/develop
45+
git submodule update --init --recursive
46+
```
47+
48+
2. Install prerequisites by running the following:
49+
```
50+
sudo apt-get install python3-pip python3-venv
51+
```
52+
53+
3. Search for available scripts that create python virtual environments for different task types:
54+
```bash
55+
find external/ -name init_venv.sh
56+
```
57+
58+
Sample output:
59+
```
60+
external/mmdetection/init_venv.sh
61+
external/mmsegmentation/init_venv.sh
62+
external/deep-object-reid/init_venv.sh
63+
```
64+
65+
4. Create, activate Object Detection virtual environment, and install `ote_cli`:
66+
```
67+
./external/mmdetection/init_venv.sh det_venv
68+
source det_venv/bin/activate
69+
pip3 install -e ote_cli/
70+
```
71+
To learn more about OTE CLI commands go to [GitHub](https://github.com/openvinotoolkit/training_extensions/blob/master/QUICK_START_GUIDE.md).
72+
73+
## Tutorials
74+
[Object Detection](https://github.com/openvinotoolkit/training_extensions/blob/master/ote_cli/notebooks/train.ipynb)
75+
76+
## Contribution
77+
If you want to contribute, refer to [Contributing guide](https://github.com/openvinotoolkit/training_extensions/blob/master/CONTRIBUTING.md) before starting work on a pull request.
78+
79+
Deep Learning Deployment Toolkit is licensed under [Apache License Version 2.0](https://github.com/openvinotoolkit/training_extensions/blob/master/LICENSE).
80+
By contributing to the project, you agree to the license and copyright terms therein
81+
and release your contribution under these terms.
File renamed without changes.
File renamed without changes.
File renamed without changes.

0 commit comments

Comments
 (0)