1
- # Copyright (C) 2020-2021 Intel Corporation
1
+ # Copyright (C) 2020-2023 Intel Corporation
2
+ # SPDX-License-Identifier: Apache-2.0
2
3
#
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing,
10
- # software distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions
13
- # and limitations under the License.
14
4
15
5
import datetime
16
6
from typing import cast
@@ -962,7 +952,7 @@ def test_f_measure_calculator_get_results_per_confidence(self):
962
952
# Check "_AggregatedResults" object returned by "get_results_per_confidence" when All Classes f-measure is more
963
953
# than best f-measure in results_per_confidence
964
954
expected_results_per_confidence = _AggregatedResults (["class_1" , "class_2" ])
965
- for confidence_threshold in np .arange (* [0.6 , 0.9 ]):
955
+ for confidence_threshold in np .arange (* [0.6 , 0.9 , 0.1 ]):
966
956
result_point = f_measure_calculator .evaluate_classes (
967
957
classes = ["class_1" , "class_2" ],
968
958
iou_threshold = 0.7 ,
@@ -978,7 +968,7 @@ def test_f_measure_calculator_get_results_per_confidence(self):
978
968
979
969
actual_results_per_confidence = f_measure_calculator .get_results_per_confidence (
980
970
classes = ["class_1" , "class_2" ],
981
- confidence_range = [0.6 , 0.9 ],
971
+ confidence_range = [0.6 , 0.9 , 0.1 ], # arrange(0.6, 0.9, 0.1)
982
972
iou_threshold = 0.7 ,
983
973
)
984
974
assert actual_results_per_confidence .all_classes_f_measure_curve == (
@@ -987,7 +977,9 @@ def test_f_measure_calculator_get_results_per_confidence(self):
987
977
assert actual_results_per_confidence .f_measure_curve == expected_results_per_confidence .f_measure_curve
988
978
assert actual_results_per_confidence .recall_curve == expected_results_per_confidence .recall_curve
989
979
assert actual_results_per_confidence .best_f_measure == 0.5454545454545453
990
- assert actual_results_per_confidence .best_threshold == 0.6
980
+ # 0.6 -> 0.54, 0.7 -> 0.54, 0.8 -> 0.54, 0.9 -> 0.44
981
+ # Best ""LARGEST" trehshold should be 0.8 (considering numerical error)
982
+ assert abs (actual_results_per_confidence .best_threshold - 0.8 ) < 0.001
991
983
# Check "_AggregatedResults" object returned by "get_results_per_confidence" when All Classes f-measure is less
992
984
# than best f-measure in results_per_confidence
993
985
actual_results_per_confidence = f_measure_calculator .get_results_per_confidence (
0 commit comments