-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathExercise03.html
265 lines (265 loc) · 9.43 KB
/
Exercise03.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>LAB GUIDE – includes</title>
<style>
html {
line-height: 1.5;
font-family: Georgia, serif;
font-size: 20px;
color: #1a1a1a;
background-color: #fdfdfd;
}
body {
margin: 0 auto;
max-width: 36em;
padding-left: 50px;
padding-right: 50px;
padding-top: 50px;
padding-bottom: 50px;
hyphens: auto;
overflow-wrap: break-word;
text-rendering: optimizeLegibility;
font-kerning: normal;
}
@media (max-width: 600px) {
body {
font-size: 0.9em;
padding: 1em;
}
h1 {
font-size: 1.8em;
}
}
@media print {
body {
background-color: transparent;
color: black;
font-size: 12pt;
}
p, h2, h3 {
orphans: 3;
widows: 3;
}
h2, h3, h4 {
page-break-after: avoid;
}
}
p {
margin: 1em 0;
}
a {
color: #1a1a1a;
}
a:visited {
color: #1a1a1a;
}
img {
max-width: 100%;
}
h1, h2, h3, h4, h5, h6 {
margin-top: 1.4em;
}
h5, h6 {
font-size: 1em;
font-style: italic;
}
h6 {
font-weight: normal;
}
ol, ul {
padding-left: 1.7em;
margin-top: 1em;
}
li > ol, li > ul {
margin-top: 0;
}
blockquote {
margin: 1em 0 1em 1.7em;
padding-left: 1em;
border-left: 2px solid #e6e6e6;
color: #606060;
}
code {
font-family: Menlo, Monaco, 'Lucida Console', Consolas, monospace;
font-size: 85%;
margin: 0;
}
pre {
margin: 1em 0;
overflow: auto;
}
pre code {
padding: 0;
overflow: visible;
overflow-wrap: normal;
}
.sourceCode {
background-color: transparent;
overflow: visible;
}
hr {
background-color: #1a1a1a;
border: none;
height: 1px;
margin: 1em 0;
}
table {
margin: 1em 0;
border-collapse: collapse;
width: 100%;
overflow-x: auto;
display: block;
font-variant-numeric: lining-nums tabular-nums;
}
table caption {
margin-bottom: 0.75em;
}
tbody {
margin-top: 0.5em;
border-top: 1px solid #1a1a1a;
border-bottom: 1px solid #1a1a1a;
}
th {
border-top: 1px solid #1a1a1a;
padding: 0.25em 0.5em 0.25em 0.5em;
}
td {
padding: 0.125em 0.5em 0.25em 0.5em;
}
header {
margin-bottom: 4em;
text-align: center;
}
#TOC li {
list-style: none;
}
#TOC ul {
padding-left: 1.3em;
}
#TOC > ul {
padding-left: 0;
}
#TOC a:not(:hover) {
text-decoration: none;
}
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
</style>
<script src="https://code.jquery.com/jquery-3.2.1.min.js" integrity="sha256-hwg4gsxgFZhOsEEamdOYGBf13FyQuiTwlAQgxVSNgt4=" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" integrity="sha384-BVYiiSIFeK1dGmJRAkycuHAHRg32OmUcww7on3RYdg4Va+PmSTsz/K68vbdEjh4u" crossorigin="anonymous">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap-theme.min.css" integrity="sha384-rHyoN1iRsVXV4nD0JutlnGaslCJuC7uwjduW9SVrLvRYooPp2bWYgmgJQIXwl/Sp" crossorigin="anonymous">
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
<link rel="stylesheet" href="https://opsgilitylabs.blob.core.windows.net/lablayout/labstyles.css"></link>
<!--[if lt IE 9]>
<script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
<![endif]-->
</head>
<body>
<h2 id="exercise-3---extract-information-from-receipts">Exercise 3 -
Extract information from receipts</h2>
<ul>
<li><p>Using the same in-private browser instance, navigate to the <a
href="https://make.powerapps.com/">Power Apps site</a> site.</p></li>
<li><p>In the top right of the screen, ensure the Environment is set to
<strong>AIBuilderEnv</strong>.</p></li>
<li><p>With your environment selected choose <strong>AI Models</strong>
from the navigation. If it is not visible you might have to click the
<strong>… More</strong> navigation to add it to the menu.</p>
<p><img src="images/aimodels.png" /></p></li>
<li><p>In the main portion of the screen click on the
<strong>Documents</strong> tab to filter the results.</p></li>
<li><p>Finally, select <strong>Extract information from
receipts</strong></p>
<p><img src="images/textfromreceipts.png" /></p></li>
<li><p>In the dialog, click on <strong>Use prebuilt model</strong> and
choose <strong>Use in a flow</strong> option from the dropdown. This
means we will build a re-usable Power Automate Flow to create a
re-usable Flow to Extract all the text in photos and PDF documents
(OCR).</p></li>
<li><p>Select the <strong>Track expenses by scanning receipts to your
OneDrive for Business</strong> template that is already pre-created.</p>
<p><img src="images/expenses.png" /></p></li>
<li><p>Very similiar to the previous exercise validate that you see
green checks next to all the connections. Then click
<strong>Continue</strong></p>
<p><img src="images/continue2.png" /></p></li>
<li><p>Before configuring the <strong>Flow</strong> click on the nine
square in the upper-right hand corner. Then select the three dots next
to <strong>OneDrive</strong> and choose <strong>Open in new
tab</strong></p>
<p><img src="images/onedrivetab.png" /></p></li>
<li><p>In OneDrive click on the <strong>Add new</strong> button and
choose <strong>Files upload</strong></p></li>
<li><p>Upload the following file <strong>Receipts.xlsx</strong> from the
Lab Downloads file in the **AIBuilderLabFiles_Contoso** folder.</p></li>
<li><p>Return to the <strong>Flow</strong> tab in the browser</p></li>
<li><p>There are two steps that need additional configuration. Select
the first step called <strong>When a file is created</strong>. When
selected the properties panel will open. Click on the
<strong>folder</strong> icon and choose <strong>Root</strong> to select
the top level folder in <strong>OneDrive</strong>.</p>
<p><img src="images/rootselected.png" /></p></li>
<li><p>Now select the fourth, and last step, called <strong>Add a row
into a table</strong>. <strong>Note:</strong> this does require the file
to uploaded from the previous step.</p>
<p><img src="images/add-a-row.png" /></p></li>
<li><p>In the properties panel choose the <strong>Document
Library</strong> and select <strong>OneDrive</strong></p>
<p><img src="images/onedrive2.png" /></p></li>
<li><p>Next click on the folder icon and select the
<strong>Receipts.xlsx</strong> file previously uploaded.</p></li>
<li><p>In the <strong>Table</strong> dropdown select
<strong>Table1</strong> which is defined in the Excel spreadsheet that
was uploaded to OneDrive.</p>
<p><img src="images/ttable1.png" /></p></li>
<li><p>The view after configured.</p>
<p><img src="images/add-table-final.png" /></p></li>
<li><p>In the <strong>Advanced parameters</strong> section you should
see some pre-populated values. Click on the <strong>Show all</strong>
link. This will show all the potential values available.</p>
<p><img src="images/showall.png" /></p></li>
<li><p>From the <strong>DateTime Format</strong> dropdown choose
<strong>ISO 8601</strong></p>
<p><img src="images/iso.png" /></p></li>
<li><p>To add additional parameters you can use the following animation
to assist.</p>
<p><img src="images/parmsmapping.gif" /></p></li>
<li><p>Click on <strong>Save</strong> in the upper right-hand corner</p>
<p><img src="images/save1.png" /></p></li>
<li><p>Remove the following unnesserry options by clicking the X button.
Then click <strong>Save</strong> again.</p>
<p><img src="images/remove-fields.png" /></p></li>
<li><p>Then click on <strong>Test</strong> and choose the radio button
for <strong>Manually</strong> and finally click the
<strong>Test</strong> button. This will start the flow to monitor for
uploaded files to OneDrive.</p>
<p><img src="images/test3.png" /></p></li>
<li><p>Switch back to the OneDrive tab and upload one of the sample
receipts from the C:_Contoso folder.</p></li>
<li><p>This shows the completed <strong>Flow</strong></p>
<p><img src="images/receiptsflow.png" /></p></li>
<li><p>Now switch back to the <strong>OneDrive</strong> tab and open the
<strong>Receipts.xlsx</strong> file</p></li>
<li><p>Depending on the parameters added and file chosen you might see
different values</p>
<p><img src="images/receiptout.png" /></p>
<blockquote>
<p>The values were parsed from the uploaded reciept and stored in the
spreadsheet.</p>
</blockquote></li>
</ul>
<h2 id="summary">Summary</h2>
<p>In this exercise, you created a flow that leveraged a pre-created AI
Builder model to parse data out of uploaded reciepts and saved the
results in a spreadsheet all without writing any code.</p>
</body>
</html>