forked from rathoresrikant/HacktoberFestContribute
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Live Twitter Sentiment Analysis.py
112 lines (81 loc) · 2.92 KB
/
Live Twitter Sentiment Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
### Live Twitter Sentiment Analysis ###
# pip install tweepy
# pip install textblob
# Creating Account with Twitter API
## Importing the Libraries ##
from textblob import TextBlob
import sys
import tweepy
import matplotlib.pyplot as plt
## Define a function to calculate the percentage ##
def percentage(part, whole):
return 100 * float(part)/float(whole)
## Connecting with the Twitter API ##
# Importing the keys #
consumerKey = "copy here your keys"
consumerSecret = "copy here your keys"
accessToken = "copy here your keys"
accessTokenSecret = "copy here your keys"
# Establish the connection with API #
auth = tweepy.OAuthHandler(consumerKey, consumerSecret)
auth.set_access_token(accessToken, accessTokenSecret)
api = tweepy.API(auth)
# Search for the Term and define number of tweets #
searchTerm = input("Enter Keyword/Tag to search about: ")
NoOfTerms = int(input("Enter how many tweets to search: "))
# Get no of tweets and searched term together #
tweets = tweepy.Cursor(api.search, q=searchTerm).items(NoOfTerms)
## Iterate and Analyse the tweets ##
# Working of the TextBlob #
a = TextBlob("I am a bad Cricket player")
a.sentiment.polarity
b = TextBlob("I am a good Cricket player")
b.sentiment.polarity
c = TextBlob("I am a Cricket player")
c.sentiment.polarity
# Create variables to hold the average polarity #
positive = 0
negative = 0
neutral = 0
polarity = 0
for tweet in tweets:
analysis = TextBlob(tweet.text)
polarity += analysis.sentiment.polarity
if(analysis.sentiment.polarity == 0):
neutral += 1
elif(analysis.sentiment.polarity < 0.00):
negative += 1
elif(analysis.sentiment.polarity > 0.00):
positive += 1
# Generate the percentages using previously created function percentage #
positive = percentage(positive, NoOfTerms)
negative = percentage(negative, NoOfTerms)
neutral = percentage(neutral, NoOfTerms)
polarity = percentage(polarity, NoOfTerms)
# Limit the decimal upto 2 places #
positive = format(positive, '.2f')
negative = format(negative, '.2f')
neutral = format(neutral, '.2f')
## Print the result ##
print("How people are reacting on " + searchTerm +
" By analyzing" + str(NoOfTerms) + " Tweets ")
if (polarity == 0):
print("Neutral")
elif (polarity < 0.00):
print("Negative")
elif (polarity > 0.00):
print("Positive")
## Print the Pie Chart ##
labels = ['Positive ['+str(positive)+'%]',
'Neutral ['+str(neutral)+'%]',
'Negative ['+str(negative)+'%]']
sizes = [positive, neutral, negative]
colors = ['yellowgreen', 'gold', 'red']
patches, texts = plt.pie(sizes, colors = colors, startangle = 90)
plt.legend(patches, labels, loc = "best")
plt.title('How people are reacting on '
+searchTerm+' by analyzing '
+str(NoOfTerms)+' Tweets ')
plt.axis('equal')
plt.tight_layout()
plt.show()