-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcvxEDA.py
139 lines (118 loc) · 5.74 KB
/
cvxEDA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
______________________________________________________________________________
File: cvxEDA.py
Last revised: 07 Nov 2015 r69
______________________________________________________________________________
Copyright (C) 2014-2015 Luca Citi, Alberto Greco
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You may contact the author by e-mail (lciti@ieee.org).
______________________________________________________________________________
This method was first proposed in:
A Greco, G Valenza, A Lanata, EP Scilingo, and L Citi
"cvxEDA: a Convex Optimization Approach to Electrodermal Activity Processing"
IEEE Transactions on Biomedical Engineering, 2015
DOI: 10.1109/TBME.2015.2474131
If you use this program in support of published research, please include a
citation of the reference above. If you use this code in a software package,
please explicitly inform the end users of this copyright notice and ask them
to cite the reference above in their published research.
______________________________________________________________________________
"""
import numpy as np
import cvxopt as cv
import cvxopt.solvers
def cvxEDA(y, delta, tau0=2., tau1=0.7, delta_knot=10., alpha=8e-4, gamma=1e-2,
solver=None, options={'reltol':1e-9}):
"""CVXEDA Convex optimization approach to electrodermal activity processing
This function implements the cvxEDA algorithm described in "cvxEDA: a
Convex Optimization Approach to Electrodermal Activity Processing"
(http://dx.doi.org/10.1109/TBME.2015.2474131, also available from the
authors' homepages).
Arguments:
y: observed EDA signal (we recommend normalizing it: y = zscore(y))
delta: sampling interval (in seconds) of y
tau0: slow time constant of the Bateman function
tau1: fast time constant of the Bateman function
delta_knot: time between knots of the tonic spline function
alpha: penalization for the sparse SMNA driver
gamma: penalization for the tonic spline coefficients
solver: sparse QP solver to be used, see cvxopt.solvers.qp
options: solver options, see:
http://cvxopt.org/userguide/coneprog.html#algorithm-parameters
Returns (see paper for details):
r: phasic component
p: sparse SMNA driver of phasic component
t: tonic component
l: coefficients of tonic spline
d: offset and slope of the linear drift term
e: model residuals
obj: value of objective function being minimized (eq 15 of paper)
"""
n = len(y)
y = cv.matrix(y)
# bateman ARMA model
a1 = 1./min(tau1, tau0) # a1 > a0
a0 = 1./max(tau1, tau0)
ar = np.array([(a1*delta + 2.) * (a0*delta + 2.), 2.*a1*a0*delta**2 - 8.,
(a1*delta - 2.) * (a0*delta - 2.)]) / ((a1 - a0) * delta**2)
ma = np.array([1., 2., 1.])
# matrices for ARMA model
i = np.arange(2, n)
A = cv.spmatrix(np.tile(ar, (n-2,1)), np.c_[i,i,i], np.c_[i,i-1,i-2], (n,n))
M = cv.spmatrix(np.tile(ma, (n-2,1)), np.c_[i,i,i], np.c_[i,i-1,i-2], (n,n))
# spline
delta_knot_s = int(round(delta_knot / delta))
spl = np.r_[np.arange(1.,delta_knot_s), np.arange(delta_knot_s, 0., -1.)] # order 1
spl = np.convolve(spl, spl, 'full')
spl /= max(spl)
# matrix of spline regressors
i = np.c_[np.arange(-(len(spl)//2), (len(spl)+1)//2)] + np.r_[np.arange(0, n, delta_knot_s)]
nB = i.shape[1]
j = np.tile(np.arange(nB), (len(spl),1))
p = np.tile(spl, (nB,1)).T
valid = (i >= 0) & (i < n)
B = cv.spmatrix(p[valid], i[valid], j[valid])
# trend
C = cv.matrix(np.c_[np.ones(n), np.arange(1., n+1.)/n])
nC = C.size[1]
# Solve the problem:
# .5*(M*q + B*l + C*d - y)^2 + alpha*sum(A,1)*p + .5*gamma*l'*l
# s.t. A*q >= 0
old_options = cv.solvers.options.copy()
cv.solvers.options.clear()
cv.solvers.options.update(options)
if solver == 'conelp':
# Use conelp
z = lambda m,n: cv.spmatrix([],[],[],(m,n))
G = cv.sparse([[-A,z(2,n),M,z(nB+2,n)],[z(n+2,nC),C,z(nB+2,nC)],
[z(n,1),-1,1,z(n+nB+2,1)],[z(2*n+2,1),-1,1,z(nB,1)],
[z(n+2,nB),B,z(2,nB),cv.spmatrix(1.0, range(nB), range(nB))]])
h = cv.matrix([z(n,1),.5,.5,y,.5,.5,z(nB,1)])
c = cv.matrix([(cv.matrix(alpha, (1,n)) * A).T,z(nC,1),1,gamma,z(nB,1)])
res = cv.solvers.conelp(c, G, h, dims={'l':n,'q':[n+2,nB+2],'s':[]})
obj = res['primal objective']
else:
# Use qp
Mt, Ct, Bt = M.T, C.T, B.T
H = cv.sparse([[Mt*M, Ct*M, Bt*M], [Mt*C, Ct*C, Bt*C],
[Mt*B, Ct*B, Bt*B+gamma*cv.spmatrix(1.0, range(nB), range(nB))]])
f = cv.matrix([(cv.matrix(alpha, (1,n)) * A).T - Mt*y, -(Ct*y), -(Bt*y)])
res = cv.solvers.qp(H, f, cv.spmatrix(-A.V, A.I, A.J, (n,len(f))),
cv.matrix(0., (n,1)), solver=solver)
obj = res['primal objective'] + .5 * (y.T * y)
cv.solvers.options.clear()
cv.solvers.options.update(old_options)
l = res['x'][-nB:]
d = res['x'][n:n+nC]
t = B*l + C*d
q = res['x'][:n]
p = A * q
r = M * q
e = y - r - t
return (np.array(a).ravel() for a in (r, p, t, l, d, e, obj))