Skip to content

Latest commit

 

History

History
167 lines (129 loc) · 3.84 KB

README.md

File metadata and controls

167 lines (129 loc) · 3.84 KB

deduped

deduped contains one main function deduped() which speeds up slow, vectorized functions by only performing computations on the unique values of the input and expanding the results at the end.

One particular use case of deduped() that I come across a lot is when using basename() and dirname() on the file_path column after reading multiple CSVs (e.g. with readr::read_csv(..., id="file_path")). basename() and dirname() are surprisingly slow (especially on Windows), and most of the column is duplicated.

Installation

You can install the released version of deduped from CRAN with:

install.packages("deduped")

And the development version from GitHub:

if(!requireNamespace("remotes")) install.packages("remotes")

remotes::install_github("orgadish/deduped")

Examples

Setup

library(deduped)
set.seed(0)

slow_func <- function(ii) {
  for (i in ii) {
    Sys.sleep(0.0005)
  }
}

deduped()

unique_vec <- sample(LETTERS, 5)
unique_vec
#> [1] "N" "Y" "D" "G" "A"

# Create a vector with significant duplication.
duplicated_vec <- sample(rep(unique_vec, 50))
length(duplicated_vec)
#> [1] 250

system.time({  x1 <- slow_func(duplicated_vec)  })
#>    user  system elapsed 
#>    0.00    0.00    3.87
system.time({  x2 <- deduped(slow_func)(duplicated_vec)  })
#>    user  system elapsed 
#>    0.07    0.05    0.19

all.equal(x1, x2)
#> [1] TRUE

deduped(lapply)()

deduped() can also be combined with lapply() or purrr::map().

unique_list <- lapply(1:3, function(j) sample(LETTERS, j, replace = TRUE))
str(unique_list)
#> List of 3
#>  $ : chr "E"
#>  $ : chr [1:2] "L" "O"
#>  $ : chr [1:3] "N" "O" "Q"

# Create a list with significant duplication.
duplicated_list <- sample(rep(unique_list, 50)) 
length(duplicated_list)
#> [1] 150

system.time({  y1 <- lapply(duplicated_list, slow_func)  })
#>    user  system elapsed 
#>    0.00    0.00    4.66
system.time({  y2 <- deduped(lapply)(duplicated_list, slow_func)  })
#>    user  system elapsed 
#>     0.0     0.0     0.1

all.equal(y1, y2)
#> [1] TRUE

Specific example: deduped(basename)() on file paths

Note: Times shown below are based on running R 4.3.2 on Windows 10, for which basename() is known to be slow: Bug 18597.

# Create multiple CSVs to read
tf <- withr::local_tempdir()

# Duplicate mtcars 10,000x and write 1 CSV for each value of `am`
duplicated_mtcars <- dplyr::slice(mtcars, rep(1:nrow(mtcars), 10000))
invisible(sapply(
  dplyr::group_split(duplicated_mtcars, am),
  function(dat) {
    file_name <- paste0("mtcars_", unique(dat$am), ".csv")
    readr::write_csv(dat, file.path(tf, file_name))
  }
))

# Read the separate files back in.
mtcars_files <- list.files(tf, full.names = TRUE)
length(mtcars_files)
#> [1] 2

duplicated_mtcars_from_files <- readr::read_csv(
  mtcars_files,
  id = "file_path",
  show_col_types = FALSE
)
dplyr::count(duplicated_mtcars_from_files, basename(file_path))
#> # A tibble: 2 × 2
#>   `basename(file_path)`      n
#>   <chr>                  <int>
#> 1 mtcars_0.csv          190000
#> 2 mtcars_1.csv          130000

# Original: slow
system.time({
  df1 <- dplyr::mutate(
    duplicated_mtcars_from_files,
    file_name = basename(file_path)
  )
})
#>    user  system elapsed 
#>    2.94    0.04    2.97

# Deduped: fast
system.time({
  df2 <- dplyr::mutate(
    duplicated_mtcars_from_files,
    file_name = deduped(basename)(file_path)
  )
})
#>    user  system elapsed 
#>       0       0       0

all.equal(df1, df2)
#> [1] TRUE