-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.lua
292 lines (262 loc) · 11.8 KB
/
test.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
-- GPM test loop
-- Shuangjun Liu (NEU/ACLab)
if(opt.evaluate) then
testLogger = optim.Logger(paths.concat(opt.save, 'evaluate.log'))
else
testLogger = optim.Logger(paths.concat(opt.save, opt.testDir .. '.log'))
end
local batchNumber
local lossG, lossD, lossL1, lossAll
-- GPU inputs (preallocate)
local inputs = torch.CudaTensor() -- batch
local real_B = torch.CudaTensor() -- read in single batch
local jMaps = torch.CudaTensor()
-- put in if not in the file scope then,
local real_A = torch.CudaTensor()
local real_Bs = {} -- save all true labels
local fake_Bs = {} -- list output batch list
local real_AB = torch.CudaTensor() -- list output for
local fake_AB = torch.CudaTensor()
local real_ABs = {} -- list output -- duplicated list for criterion input
local fake_ABs = {} -- list input -- same real_A but stages fake
local bMap_Rs = {} -- real_ABs through netD
local bMap_Fs = {} -- fake_ABs through netD
--local bMap_FRs = {} -- fake with real labels for G loss
local real_label = 1
local fake_label = 0
local errD, errG, errL1, errAll = 0, 0, 0 -- errD for disc error, errG for cheating D loss,
local jMap_sum -- for single jMap sum to save skeleton image
local timer = torch.Timer()
function test()
--local optimState -- maybe for upvalue in test threads
if(opt.evaluate) then
print('==> Testing final predictions')
else
epochLoad = math.floor(epoch/10)*10 -- only save every 10 epoches
if 0 == epochLoad then
epochLoad =1
end
--optimState = torch.load(paths.concat(opt.save, 'optimState_' .. epochLoad .. '.t7')) -- not used in the process
print('==> validation epoch # ' .. epoch)
end
batchNumber = 0
cutorch.synchronize()
timer:reset()
-- set to evaluate mode
netG:evaluate() -- control the batchNorm dropout
if opt.cGAN then
netD:evaluate()
end
lossG = 0
lossD = 0
lossL1 = 0 -- upvalue
lossAll = 0
local testFunc = nil
if opt.cGAN then
testFunc = testBatch_cGAN
print('take cGan test session')
else
testFunc = testBatch
print('employ L1 only test session')
end
for i=1,nTest/opt.batchSize do -- nTest is set in data.lua
local indexStart = (i-1) * opt.batchSize + 1 -- inorder load in image paths, why not the same?
local indexEnd = math.min(nTest, indexStart + opt.batchSize - 1)
donkeys:addjob(
-- work to be done by donkey thread
function()
local inputs, labels, jMaps, indices = testLoader:get(indexStart, indexEnd)
return inputs, labels, jMaps, indices
end,
testFunc
)
end
donkeys:synchronize() -- threads pool
cutorch.synchronize()
-- Performance measures:
lossG = lossG / (nTest/opt.batchSize)
lossD = lossD / (nTest/opt.batchSize)
lossL1 = lossL1 / (nTest/opt.batchSize) -- local loss
lossAll = lossAll / (nTest/opt.batchSize)
--lossAll = lossG + lossD + lossL1
table.insert(lossLi_tst, lossAll)
testLogger:add{
['epoch'] = epoch,
['lossG'] = lossG,
['lossG'] = lossD,
['lossL1'] = lossL1,
['lossALL'] = lossAll
}
if(not opt.evaluate) then
opt.plotter:add('lossG', 'test', epoch, lossG)
opt.plotter:add('lossD', 'test', epoch, lossD)
opt.plotter:add('lossL1', 'test', epoch, lossL1)
opt.plotter:add('lossAll', 'test', epoch, lossAll)
print(string.format('Epoch: [%d] ', epoch))
end
print(string.format('[TESTING SUMMAR] Total Time(s): %.2f \t' .. 'lossG: %.6f \t'.. 'lossD: %.6f \t'.. 'lossL1: %.6f \t'.. 'lossAll: %.6f \t',timer:time().real, lossG, lossD, lossL1, lossAll))
print('\n')
end -- of test()
-----------------------------------------------------------------------------
local inputs = torch.CudaTensor()
local real_B = torch.CudaTensor()
local jMaps = torch.CudaTensor()
function testBatch(inputsCPU, labelsCPU, jMapsCPU)
batchNumber = batchNumber + opt.batchSize -- actually imNum the updated testBatch can have different images.
inputs:resize(inputsCPU:size()):copy(inputsCPU)
real_B:resize(labelsCPU:size()):copy(labelsCPU)
jMaps:resize(jMapsCPU:size()):copy(jMapsCPU)
local outputs = netG:forward({ inputs, jMaps}) -- a table
-- num outputs = nStacks
local target
if(opt.nStack > 1) then
target = {}
-- Same ground truth for all 8 stacks
for st = 1, opt.nStack do
table.insert(target, real_B)
end
else
target = real_B
end
local idStg = opt.nStack -- which stage to save out
if opt.evaluate then -- only save when evaluate opt.evaluate
if batchNumber <= opt.numOutImgs then
-- save image to folder only last stage at this time
--print('in save period')
--print('the opt.ifAllStgs is', opt.ifAllStgs)
for i= 1,opt.batchSize do
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. idStg .. '_O.jpg'), deNormImg(outputs[opt.nStack][i]:clone())) -- last output image [nstacks][batchSize]
if opt.ifAllStgs == 1 then
print('ifAllStgs is 1')
for j = 1, opt.nStack -1 do
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. j .. '_O.jpg'), deNormImg(outputs[j][i]:clone()))
print('save to', paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. j .. '_O.jpg'))
end
end
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. idStg .. '_A.jpg'), deNormImg(inputs[i]:clone()))
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i ..'_st' .. idStg .. '_B.jpg'), deNormImg(real_B[i]:clone())) -- deNormImg will change the value itself
end
-- display result
end
end
-- Compute loss
local err = criterionAE:forward(outputs, target) -- nStack tables diff error
cutorch.synchronize()
lossL1 = lossL1 + err
if(opt.evaluate) then -- str for other standard, no suitable here
print(string.format('Testing [%d/%d] \t Loss %.8f \t', batchNumber, nTest, err))
else
print(string.format('Epoch: Testing [%d][%d/%d] \t Loss %.8f \t', epoch, batchNumber, nTest, err))
end
end
function testBatch_cGAN(inputsCPU, labelsCPU, jMapsCPU)
batchNumber = batchNumber + opt.batchSize -- actually imNum
inputs:resize(inputsCPU:size()):copy(inputsCPU)
real_B:resize(labelsCPU:size()):copy(labelsCPU)
jMaps:resize(jMapsCPU:size()):copy(jMapsCPU)
-- create real and fake
real_A = torch.cat(inputs, jMaps, 2)
-- real_B already in
real_AB = torch.cat(real_A, real_B, 2)
real_ABs = {} -- empty it
for i = 1, opt.nStack do
table.insert(real_ABs, real_AB)
end
real_Bs = {}
for i = 1, opt.nStack do
table.insert(real_Bs, real_B)
end
-- create fake
fake_Bs = netG:forward({inputs, jMaps}) -- a list
fake_ABs = {}
for i = 1, opt.nStack do
table.insert(fake_ABs, torch.cat(real_A, fake_Bs[i], 2))
end
-- errD
-- Real
bMap_Rs = netD:forward(real_ABs) -- table back
local label = torch.FloatTensor(bMap_Rs[1]:size()):fill(real_label)
local labels = {}
if opt.nGPU>0 then
label = label:cuda()
end
for i = 1, opt.nStack do
table.insert(labels, label)
end
local errD_real = criterionDisc:forward(bMap_Rs, labels) -- sigma p*log(p_) q*log(q_) that is 1*log(real) (1-0)log(1-p_) pre real how much loss + pre fake how much loss
-- Fake
bMap_Fs = netD:forward(fake_ABs) -- predict table
local label = torch.FloatTensor(bMap_Fs[1]:size()):fill(fake_label)
local labels = {} -- true table
if opt.nGPU>0 then
label = label:cuda()
end
for i = 1, opt.nStack do
table.insert(labels, label)
end
local errD_fake = criterionDisc:forward(bMap_Fs, labels)
errD = (errD_real + errD_fake)/2
-- errG
local label = torch.FloatTensor(bMap_Fs[1]:size()):fill(real_label)
local labels = {} -- true table
if opt.nGPU>0 then
label = label:cuda()
end
for i = 1, opt.nStack do
table.insert(labels, label)
end
errG = criterionDisc:forward(bMap_Fs, labels)
-- errL1
local target
if(opt.nStack > 1) then
target = {}
-- Same ground truth for all 8 stacks
for st = 1, opt.nStack do
table.insert(target, real_B)
end
else
target = real_B
end
errL1 = criterionAE:forward(fake_Bs, target) -- nStack tables diff error
errAll = errG + errD + errL1 * opt.lambda -- weighted the weight
-- image save out
local idStg = opt.nStack -- which stage to save out
if opt.evaluate then -- only save when evaluate opt.evaluate
if batchNumber <= opt.numOutImgs then
-- save image to folder only last stage at this time
for i= 1,opt.batchSize do
jMap_sum = jMaps[i]:clone():sum(1):squeeze() -- 2 dim image
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. idStg .. '_O.'.. opt.outFormat), deNormImg(fake_Bs[opt.nStack][i]:clone())) -- last output image [nstacks][batchSize]
if opt.ifAllStgs == 1 then
--local j
for j = 1, opt.nStack -1 do
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. j .. '_O.'.. opt.outFormat), deNormImg(fake_Bs[j][i]:clone()))
end
end
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. idStg .. '_A.'.. opt.outFormat), deNormImg(inputs[i]:clone()))
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i ..'_st' .. idStg .. '_B.'.. opt.outFormat), deNormImg(real_B[i]:clone())) -- deNormImg will change the value itself
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i ..'_st' .. idStg .. '_S.'.. opt.outFormat), jMap_sum) -- deNormImg will change the value itself
if opt.ifABO==1 then
--print('j is', j)
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. idStg .. '_ABO.'.. opt.outFormat), torch.cat({deNormImg(inputs[i]:clone()), deNormImg(real_B[i]:clone()), deNormImg(fake_Bs[opt.nStack][i]:clone())}, 3))
end
if opt.ifASO ==1 then
image.save(paths.concat(opt.outImgsDir, 'test' .. '_sq' .. batchNumber - opt.batchSize + i .. '_st' .. idStg .. '_ABS.'.. opt.outFormat), torch.cat({deNormImg(inputs[i]:clone()), jMap_sum, deNormImg(fake_Bs[opt.nStack][i]:clone())}, 3))
end
end
-- display result
end
end
cutorch.synchronize()
lossG = lossG + errG
lossD = lossD + errD
lossL1 = lossL1 + errL1
lossAll = lossAll + errAll
if(opt.evaluate) then -- str for other standard, no suitable here
--print(string.format('Testing [%d/%d] \t Loss %.8f \t', batchNumber, nTest, err))
print(string.format('Testing [%d/%d] \t errG %.8f \t errD %.8f \t errL1 %.8f \t errAll %.8f \t', batchNumber, nTest, errG, errD, errL1, errAll))
else
--print(string.format('Epoch: Testing [%d][%d/%d] \t Loss %.8f \t', epoch, batchNumber, nTest, err))
print(string.format('Testing [%d][%d/%d] \t errG %.8f \t errD %.8f \t errL1 %.8f \t errAll %.8f \t', epoch, batchNumber, nTest, errG, errD, errL1, errAll))
end
end