-
Notifications
You must be signed in to change notification settings - Fork 562
/
Copy pathtest_integration_vllm.py
239 lines (178 loc) · 6.76 KB
/
test_integration_vllm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import datetime
import re
import pytest
import torch
from pydantic import BaseModel, constr
from vllm.sampling_params import SamplingParams
import outlines.generate as generate
import outlines.grammars as grammars
import outlines.models as models
import outlines.samplers as samplers
pytestmark = pytest.mark.skipif(
not torch.cuda.is_available(), reason="vLLM models can only be run on GPU."
)
@pytest.fixture(scope="module")
def model():
return models.vllm("gpt2", gpu_memory_utilization=0.5)
@pytest.mark.parametrize(
"generator_type,params", ((generate.text, []), (generate.regex, ("[0-9]",)))
)
def test_vllm_generation_api(model, generator_type, params):
generator = generator_type(model, *params)
res = generator("test")
assert isinstance(res, str)
res = generator("test", max_tokens=10)
assert isinstance(res, str)
res = generator("test", stop_at=".")
assert isinstance(res, str)
res = generator("test", stop_at=[".", "ab"])
assert isinstance(res, str)
res = generator("test", stop_at=[".", "ab"])
assert isinstance(res, str)
res1 = generator("test", seed=1)
res2 = generator("test", seed=1)
assert isinstance(res1, str)
assert isinstance(res2, str)
assert res1 == res2
res = generator(["test", "test1"])
assert len(res) == 2
def test_vllm_sampling_params(model):
generator = generate.text(model)
sampling_params = SamplingParams(n=2)
res = generator("test", sampling_params=sampling_params)
assert len(res) == 2
assert isinstance(res[0], str)
assert isinstance(res[1], str)
sampling_params = SamplingParams(seed=2)
res1 = generator("test", sampling_params=sampling_params)
res2 = generator("test", sampling_params=sampling_params)
assert res1 == res2
def test_vllm_greedy_sampling(model):
sampler = samplers.greedy()
generator = generate.text(model, sampler)
res = generator("test")
assert isinstance(res, str)
def test_vllm_multinomial_sampling(model):
sampler = samplers.multinomial()
generator = generate.text(model, sampler)
res = generator("test")
assert isinstance(res, str)
sampler = samplers.multinomial(3)
generator = generate.text(model, sampler)
res = generator("test")
assert len(res) == 3
assert isinstance(res[0], str)
assert isinstance(res[1], str)
sampler = samplers.multinomial(2, top_k=1)
generator = generate.text(model, sampler)
res = generator("test")
assert res[0] == res[1]
sampler = samplers.multinomial(1, top_p=0.5)
generator = generate.text(model, sampler)
res = generator("test")
assert isinstance(res, str)
sampler = samplers.multinomial(2, temperature=0.00001)
generator = generate.text(model, sampler)
res = generator("test")
assert res[0] == res[1]
def test_vllm_beam_search(model):
sampler = samplers.beam_search(1)
generator = generate.text(model, sampler)
res1 = generator("test")
sampler = samplers.greedy()
generator = generate.text(model, sampler)
res2 = generator("test")
assert res1 == res2
sampler = samplers.beam_search(2)
generator = generate.text(model, sampler)
res = generator("test")
assert len(res) == 2
assert res[0] != res[1]
def test_vllm_text_stop(model):
prompt = "Write a short sentence containing 'You': "
sequence = generate.text(model)(prompt, max_tokens=100, seed=10)
assert sequence.find("news") != -1
sequence = generate.text(model)(prompt, stop_at="news", max_tokens=100, seed=10)
assert isinstance(sequence, str)
assert sequence.find("news") == -1
def test_vllm_regex(model):
prompt = "Write an email address: "
regex_str = r"([a-z]{10})@([a-z]{5})\.([a-z]{3})"
generator = generate.regex(model, regex_str)
# One prompt
sequence = generator(prompts=prompt)
assert isinstance(sequence, str)
assert re.fullmatch(pattern=regex_str, string=sequence) is not None
def test_vllm_integer(model):
prompt = "Give me an integer: "
sequence = generate.format(model, int)(prompt, max_tokens=10)
assert isinstance(sequence, int)
assert sequence != ""
int(sequence)
def test_vllm_float(model):
prompt = "Give me a floating-point number: "
sequence = generate.format(model, float)(prompt, max_tokens=10)
assert isinstance(sequence, float)
assert sequence != ""
float(sequence)
def test_vllm_bool(model):
prompt = "Is this True or False? "
sequence = generate.format(model, bool)(prompt, max_tokens=10)
assert isinstance(sequence, bool)
assert sequence != ""
bool(sequence)
def test_vllm_date(model):
prompt = "What day is it today? "
sequence = generate.format(model, datetime.date)(prompt, max_tokens=10)
assert isinstance(sequence, datetime.date)
def test_vllm_time(model):
prompt = "What time is it? "
sequence = generate.format(model, datetime.time)(prompt, max_tokens=10)
assert isinstance(sequence, datetime.time)
def test_vllm_datetime(model):
prompt = "What time is it? "
sequence = generate.format(model, datetime.datetime)(prompt, max_tokens=20)
assert isinstance(sequence, datetime.datetime)
def test_vllm_choice(model):
prompt = "Which one between 'test' and 'choice'? "
sequence = generate.choice(model, ["test", "choice"])(prompt)
assert sequence == "test" or sequence == "choice"
def test_vllm_json_basic(model):
prompt = "Output some JSON. "
class Spam(BaseModel):
spam: constr(max_length=10)
fuzz: bool
sampling_params = SamplingParams(temperature=0)
result = generate.json(model, Spam, whitespace_pattern="")(
prompt, max_tokens=100, seed=1, sampling_params=sampling_params
)
assert isinstance(result, BaseModel)
assert isinstance(result.spam, str)
assert isinstance(result.fuzz, bool)
assert len(result.spam) <= 10
def test_vllm_json_schema(model):
prompt = "Output some JSON. "
schema = """{
"title": "spam",
"type": "object",
"properties": {
"foo" : {"type": "boolean"},
"bar": {"type": "string", "maxLength": 4}
},
"required": ["foo", "bar"]
}
"""
sampling_params = SamplingParams(temperature=0)
result = generate.json(model, schema, whitespace_pattern="")(
prompt, max_tokens=100, seed=10, sampling_params=sampling_params
)
assert isinstance(result, dict)
assert isinstance(result["foo"], bool)
assert isinstance(result["bar"], str)
@pytest.mark.xfail(
reason="The CFG logits processor for vLLM has not been implemented yet."
)
def test_vllm_cfg(model):
prompt = "<|im_start|>user\nOutput a short and valid JSON object with two keys.<|im_end|>\n><|im_start|>assistant\n"
result = generate.cfg(model, grammars.arithmetic)(prompt, seed=11)
assert isinstance(result, str)