-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathobject_detection_camera.py
139 lines (111 loc) · 4.13 KB
/
object_detection_camera.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import argparse
import platform
import subprocess
from edgetpu.detection.engine import DetectionEngine
import picamera
import io
import time
import numpy as np
from PIL import Image
from PIL import ImageDraw
from lib import draw_labels, draw_boxes, read_label_file, pad_and_flatten, translate_and_scale_boxes, scale_boxes
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
'--model', help='Path of the detection model.', required=True)
parser.add_argument(
'--draw', help='If to draw the results.', default=True)
parser.add_argument(
'--label', help='Path of the labels file.')
args = parser.parse_args()
renderer = None
# Initialize engine.
engine = DetectionEngine(args.model)
labels = read_label_file(args.label) if args.label else None
shown = False
frames = 0
start_seconds = time.time()
FULL_SIZE_W = 640
FULL_SIZE_H = 480
img = Image.new('RGBA', (FULL_SIZE_W, FULL_SIZE_H))
draw = ImageDraw.Draw(img)
# Open image.
with picamera.PiCamera() as camera:
camera.resolution = (FULL_SIZE_W, FULL_SIZE_H)
camera.framerate = 30
_, width, height, channels = engine.get_input_tensor_shape()
print('input dims', width, height)
camera.start_preview(fullscreen=False, window=(700, 200, FULL_SIZE_W,FULL_SIZE_H))
# camera.start_preview()
# rasberry pi requires images to be resizes to multiples of 32x16
camera_multiple = (16, 32)
valid_resize_w = width - width%camera_multiple[1]
valid_resize_h = height - height%camera_multiple[0]
padding_w = (width - valid_resize_w)//2
padding_h = (height - valid_resize_h)//2
scale_w = FULL_SIZE_W / width
scale_h = FULL_SIZE_H / height
try:
stream = io.BytesIO()
for foo in camera.capture_continuous(stream,
format='rgb',
# format='jpeg',
use_video_port=True,
resize=(valid_resize_w, valid_resize_h)):
stream.truncate()
stream.seek(0)
start_frame = time.time()
input = np.frombuffer(stream.getvalue(), dtype=np.uint8)
if padding_w > 0 or padding_h > 0:
flattened = pad_and_flatten(input, (valid_resize_h, valid_resize_w), padding_h, padding_w)
else:
flattened = input
# flatten padded element
reshape_time = time.time() - start_frame
start_s = time.time()
# Run inference.
results = engine.DetectWithInputTensor(flattened, threshold=0.2,
top_k=10)
elapsed_s = time.time() - start_frame
if padding_w > 0 or padding_h > 0:
boxes = translate_and_scale_boxes(\
results, \
(valid_resize_w, valid_resize_h),\
(padding_w, padding_h), \
(FULL_SIZE_W, FULL_SIZE_H))
else:
boxes = scale_boxes(results, (FULL_SIZE_W, FULL_SIZE_H))
if args.draw:
img.putalpha(0)
draw_boxes(draw, boxes)
if labels:
draw_labels(draw, results, boxes, labels)
# display_results(ans, labels, img)
imbytes = img.tobytes()
if renderer == None:
renderer = camera.add_overlay(imbytes, size=img.size, layer=4, format='rgba', fullscreen=False,window=(700, 200, 640, FULL_SIZE_H))
else:
# print('updating')
renderer.update(imbytes)
frame_seconds = time.time()
# print(frame_seconds - start_seconds, frames)
fps = frames * 1.0 / (frame_seconds - start_seconds)
frames = frames + 1
# time.sleep(1)
camera.annotate_text = "%.2fms, %d fps" % (elapsed_s * 1000.0, fps)
finally:
camera.stop_preview()
def display_results(ans, labels, img):
# print('RESULTS:', time.time())
draw = ImageDraw.Draw(img)
for obj in ans:
print ('-----------------------------------------')
if labels:
print(obj.label_id, labels[obj.label_id])
print ('score = ', obj.score)
box = obj.bounding_box.flatten().tolist()
if(obj.score > 0.5):
draw.rectangle(box, outline='red')
print ('box = ', box)
if __name__ == '__main__':
main()