Skip to content

Latest commit

 

History

History
318 lines (270 loc) · 10.7 KB

data-objects.rst

File metadata and controls

318 lines (270 loc) · 10.7 KB

Data Objects

Config

Describes a single simulation.

config = {                       # * = Required, ! = supports default arg only
    'agents': {                  # *
        'rice': {
            'amount': 10,        # *
            'id': 1,
            <currency>: 10,
            'connections': [<Agent>],
            'delay_start': 0,
        },
        #...
    },
    'termination': [{
        'condition': 'time',     # !
        'value': 100,
        'unit': 'day'            # 'min', 'hour', 'day', 'year'
    }],
    'priorities': [              # by agent class; sub-agents step randomly
        'structures', 'storage',
        'power_generation',
        'inhabitants', 'eclss',
        'plants'
    ],
    'seed': 12345,               # Must be an integer
    'global_entropy': 0,         # 0 = no variation, 1 = max variation
    'location': 'mars'           # !
    'minutes_per_step': 60,      # !
    'single_agent': 1,           # !
}

Model Data

The data returned by AgentModel.get_data(). To return all fields use with debug=True. All lists have one entry for each step of the simulation.

data = {                               # * = default fields
    'rice': {
        'name': 'rice',                # *
        'full_amount': 10,             # *
        'lifetime': 720,
        'reproduce': True,
        'initial_variable': 0.98765,
        'capacity': {<storage>: 100},
        'amount': [10, ...],           # *
        'age': [0, 1, ...],
        'step_variable': [1.2, 2.3, ...],
        'storage': {<storage>: [0, ...]},
        'storage_ratios': {<storage>: [1, ...]},
        'flows': {
            'in': {<currency>: {<storage>: [1, ...]}},
            'out': {<currency>: {<storage>: [1, ...]}},
        },
        'buffer': {<currency>: [8, ...]},
        'deprive': {<currency>: [720, ...]},
        'growth': {
            'total_growth': [0, ...],
            'growth': [0, ...],
            'grown': [False, ...],
            'agent_step_num': [0, 1, ...],
        },
        'events': [{
            <event>: [{
                'magnitude': 0.8,
                'duration': 10
            }]
        }],
        'event_multipliers': {<event>: [0, ...]}
    }
}

Currency Description

currency_desc = {
    'food': {                                  # Currency class
        'radish': {                            # * = Required, ^ = food only
            'label': 'Radish',                 # * Display name
            'description': 'Radishes, fresh',
            'source': <url>,                   # ^ Nutrition data reference
            'unit': 'kg',                      # ^
            'nutrition': {                     # ^ Grams per <unit>
                "kcal": 180,
                "water": 941,
                "protein": 10,
                "carbohydrate": 25,
                "fat": 2
            }
        },
        # ...
    }
    # ...
}

Currency classes: atmosphere, nutrients, food, water, energy

Agent Description

agent_desc = {
    'plants': {                                 # Agent class
        'radish': {                             # Agent name
            'description': '',                  # Text description
            'data': {
                'inputs': [...<Input>],         # Currencies consumed
                'outputs': [...<Output>],       # Currencies produced
                'characteristics': [...<Char>]  # Misc params
            }
        }
        # ...
    }
    # ...
}

<Input/Output> = {                  # * = Required
    'type': 'co2',                  # * Currency name, must be in currency_desc
    'value': 0.006534,              # * Amount exchagned
    'flow_rate': {                  # * Units applied to currency exchanged
        'unit': 'kg',
        'time': 'hour'
    },
    'required': 'mandatory',        # 'mandatory' = if unavailable, skip step()
                                    # 'desired' = if unavailable, continue step()
    'deprive': {                    # If unavailable, how long to survive
        'value': 72,
        'unit': 'hour'
    }
    'growth': {                     # Map value across the hours in a day
                                    # and/or hours in agent's lifetime such
                                    # that mean hourly value is as defined.
        "lifetime": {
            "type": "sigmoid"       # 'sigmoid' = greater and end-of-lifetime
                                    # 'normal' = greater at mid-life
        },
        "daily": {
            "type": "normal"        # 'normal' = greatest in middle of day
                                    # 'clipped' = reduced early/late values
                                    # 'switch' = boolean for 'is daylight'
        }
    },
    'requires': ['h2'],             # If input is missing, skip flow
    'weighted': 'current_growth'    # Multiply value by agent storage amount or attribute
    'criteria': {                   # Activate flow based on view of a connected agent
        'name': 'co2_ratio_in',     # '<currency>_<view>_<direction>'
        'limit': '>',               # '=', '>', '<'
        'value': 0.001,             # What the returned value is compared to
        'buffer': 2                 # Wait until valid for N steps before activating.
    }
}

<Char> = {
    'type': 'capacity_o2',      # Characteristic type
    'value': 10000,             # Supports bool, int, float or string
    'unit': 'kg'                # Optional
}

Agent classes: inhabitants, eclss, plants, isru, structures, fabrication, power_generation, mobility, communication, storage

Characteristic types:

  • capacity_<currency>: The maximum amount of a particular currency that can be stored.
  • lifetime: Length of one growth cycle
  • carbon_fixation: 'c3' or 'c4', determines if/how plant responds to ambient co2.
  • volume: m**3
  • mass: kg
  • category: sub-class, e.g. 'habitat'
  • reproduce: boolean; whether lifecycle ends or is repeated
  • custom_function: two are included in the SIMOC repo: atmosphere_equalizer and rate_finder.
  • threshold_lower_<currency>: Agent is killed if ambient currency falls below

Agent Connections

Connections are directional links between agents which determine the source of inputs or destination of outputs.

The to/from fields specify an agent and currency. For the agent field, two additional options, habitat and greenhouse, are used; when a model is initialized, those options are replaced with the agent that includes the word 'habitat' or 'greenhouse' (e.g. 'greenhouse.o2' -> 'greenhouse_medium.o2')

The priority field is optional. If present, when the first connection (priority=0) is empty, the initiating agent will change to the second (priority=1) connection, and so on.

agent_conn = [{
    'from': '<agent>.<currency>',
    'to': '<agent>.<currency>',
    'priority': 0
}, ...]

Agent Variation

Agent variation is off by default. To activate, set the global_entropy parameter in config to a number 0 < N <= 1.

When active, all currency exchange values are scaled up or down when initialized and/or every step. Scalars are a random number from a defined probability density function. The upper and lower parameters specify the maximum absolute distance up or down from 1 (no effect).

agent_variation = {
    'plants': {                         # Can be agent or agent class
        'initial': {                    # Applied to values on initialization
            'upper': 0.5,               # Multiplier upper bound
            'lower': 0.5,               # Multiplier lower bound
            'distribution': 'normal'    # Probability: 'normal' or 'exponential'
        },
        'step': {
            'upper': 0.1,
            'lower': 0.1,
            'distribution': 'normal'
        }
    }

Alternatively, upper and lower values can be defined for each individual currency.

agent_variation['humans'] = {
    'initial': {
        "upper": {
            "o2": 0.045,
            # ...
        },
        "lower": {
            "o2": 0.025417,
            # ...
        },
        "distribution": "normal",
        "stdev_range": 1.65,
        "characteristics": ["mass"]
    }
    # ...
}

Agent Events

Agent events are off by default. To activate, set the global_entropy parameter in config to a number 0 < N <= 1.

agent_events = {
    "solar_pv_array_mars": [
        {
            "type": "duststorm",
            "function": "multiplier",         # 'multiplier': apply to all flows
                                              # 'termination': kill agent
            "scope": "group",                 # 'group': affects all instances
                                              # 'agent': affects a single instance
            "probability": {                  # Per group/individual based on scope
                "value": 0.0004566210046,     # Likelihood per step (if not active)
                "unit": "hour"
            },
            "magnitude": {
                "value": 1,
                "variation": {
                    "upper": 0,               # Maximum remains 1x, no effect
                    "lower": 0.9,             # Minimum is 0.1x
                    "distribution": "normal"  # Mean is 0.55x
                }
            },
            "duration": {
                "value": 24,                  # How long the effect lasts
                "unit": "hour",
                "variation": {
                    "upper": 60,              # "From 1 to 60 days"
                    "lower": 1,
                    "distribution": "exponential"  # Likely a low number
                }
            }
        },
        # ...
    ]
}