-
Notifications
You must be signed in to change notification settings - Fork 0
/
thesis.R
469 lines (409 loc) · 17.5 KB
/
thesis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
# Thesis simulations ####
#' * Agents evolve only their selfWeight
#' * Three scenarios:
#' * Bad advice
#' * Noisy advice
#' * Confidence communication
#' Each run generates around 300MB of data, because for historical reasons the
#' code saves subsets of data as well as the data itself. Each run takes around
#' 20 minutes to run on my gaming computer (16 cores, 64GB RAM).
#' Over 50 runs you will need around 15GB of storage space.
runCount <- 50
# Libraries
library(parallel)
library(tidyverse)
library(gridExtra)
library(scales)
library(patchwork)
style <- theme_light() +
theme(legend.position = 'top',
panel.grid.major.x = element_blank(),
panel.grid.minor = element_blank())
parallel <- T
ARC <- Sys.info()[[1]] != 'Windows'
if (ARC)
setwd(paste0(getwd(), '/EvopPickSelf'))
if (parallel)
ARC <- T
if (ARC) {
print(Sys.info())
# Set up the parallel execution capabilities
nCores <- detectCores()
cl <- makeCluster(nCores)
print(paste('Running in parallel on', nCores, 'cores.'))
}
# Define the function
runModel <- function(spec) {
tmpName <- paste0(spec$shortDesc, '-tmpfile-',
runif(1, max = 1000000), '-')
i <- 0
# Break up very long models into sequential shorter models
genCount <- spec$generations
generationZero <- NULL # model's seed generation data frame
while (genCount > 0) {
i <- i + 1
print(paste0(spec$shortDesc, " [", i, "]genCount = ", genCount))
setwd(spec$wd)
# Load the evoSim package
source('evoSim/evoSim/R/evoSim.R')
# Run the model for spec$maxGenerations
data <- evoSim(
genZero = generationZero,
agentCount = spec$agents,
agentDegree = spec$degree,
decisionCount = spec$decisions,
generationCount = min(genCount, spec$maxGenerations),
mutationChance = 0.01,
# recordDecisions = 100,
other = list(
sensitivity = spec$sensitivity,
sensitivitySD = spec$sensitivitySD,
adviceNoise = spec$adviceNoise,
manipulation = spec$manipulation,
shortDesc = spec$shortDesc,
startingSelfWeight = spec$startingSelfWeight
),
makeAgentsFun = function(modelParams, previousGeneration = NULL, parents = NULL) {
# Population size and generation extracted from current population or by
# modelParams$agentCount
if (is.null(previousGeneration)) {
n <- modelParams$agentCount
g <- 0
}
else {
n <- dim(previousGeneration)[1]
g <- previousGeneration$generation[1]
}
g <- g + 1 # increment generation
# mutants and fresh spawns get randomly assigned pPickSelf
makeAgents.agents <- data.frame(
selfWeight = rep(modelParams$other$startingSelfWeight,
modelParams$agentCount),
sensitivity = abs(rnorm(modelParams$agentCount,
modelParams$other$sensitivity,
modelParams$other$sensitivitySD)),
generation = rep(g, modelParams$agentCount),
adviceNoise = rep(NA, modelParams$agentCount),
# Half the agents report confidence directly, half multiply it by .5 * manipulationValue
confidenceScaling = rep(sample(c(0, .5), modelParams$agentCount, replace = T))
)
# Overwrite the agents' selfWeight by
# inheritance from parents where applicable
if (!is.null(parents)) {
evolveCols <- c('selfWeight')
makeAgents.agents[ , evolveCols] <- previousGeneration[parents, evolveCols]
# mutants inherit from a normal distribution
for (x in evolveCols) {
mutants <- runif(modelParams$agentCount) < modelParams$mutationChance
makeAgents.agents[mutants, x] <- rnorm(
sum(mutants),
previousGeneration[parents[mutants], x],
0.1
)
}
}
# Keep values in sensible ranges
makeAgents.agents$selfWeight <- clamp(makeAgents.agents$selfWeight, maxVal = 1, minVal = 0)
makeAgents.agents$sensitivity <- clamp(makeAgents.agents$sensitivity, maxVal = 1, minVal = 0.1)
# Connect agents together
ties <- modelParams$connectAgents(modelParams, makeAgents.agents)
makeAgents.agents$degree <- sapply(1:nrow(makeAgents.agents), getDegree, ties)
return(list(agents = makeAgents.agents, ties = ties))
},
selectParentsFun = function(modelParams, agents, world, ties) {
tmp <- agents[which(agents$generation == world$generation),]
tmp <- tmp[order(tmp$fitness, decreasing = T),]
# the others get weighted by relative fitness which are transformed to +ve values
tmp$fitness <- tmp$fitness - min(tmp$fitness) + 1
# scale appropriately
# NOTE: this scaling doesn't actually do anything - the normalisation in sample undoes it!
while (any(abs(tmp$fitness) < 10))
tmp$fitness <- tmp$fitness * 10
# and round off
tmp$fitness <- round(tmp$fitness)
tickets <- vector(length = sum(tmp$fitness)) # each success buys a ticket in the draw
i <- 0
for (a in 1:nrow(tmp)) {
tickets[(i + 1):(i + 1 + tmp$fitness[a])] <- a
i <- i + 1 + tmp$fitness[a]
}
winners <- sample(tickets, modelParams$agentCount, replace = T)
# The winners clone their egocentric discounting
winners <- tmp[winners,'genId']
return(winners)
},
getAdviceFun = spec$getAdviceFun,
getWorldStateFun = spec$getWorldStateFun,
getDecisionFun = spec$getDecisionFun,
getFitnessFun = spec$getFitnessFun
)
# update the seed generation
generationZero <- data$agents[data$agents$generation ==
max(data$agents$generation), ]
# Slim down the results if required
if (!is.null(spec$saveEveryNthGeneration))
data$agents <- data$agents[data$agents$generation <
spec$saveEveryNthGeneration |
data$agents$generation %%
spec$saveEveryNthGeneration == 0, ]
# Save temporary results
saveRDS(data, file = paste0(tmpName, i))
data <- NULL
genCount <- genCount - spec$maxGenerations
}
# Collate and save full results
rawdata <- list()
for (n in 1:i) {
tmp <- readRDS(paste0(tmpName, n))
rawdata$agents <- rbind(rawdata$agents, tmp$agents)
if (is.null(rawdata$model))
rawdata$model <- tmp$model
rawdata$duration <- c(rawdata$duration, tmp$duration)
file.remove(paste0(tmpName, n))
}
rawdata$rep <- 1
return(list(rawdata = rawdata))
}
# Decision function ####
uncappedWeightedAvgFun <- function(modelParams, agents, world, ties, initial = F) {
adviceNoise <- ifelse(modelParams$other$manipulation > 0,
modelParams$other$adviceNoise[modelParams$other$manipulation],
0)
mask <- which(agents$generation == world$generation)
if (initial) {
# initial decision - look and see
n <- length(mask)
agents$initialDecision[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[mask],Inf))
} else {
# Final decision - take advice by weighted averaging
# Use vector math to do the advice taking
out <- NULL
noise <- rnorm(length(mask), 0, adviceNoise)
roll <- runif(length(mask))
agents$adviceNoise[mask] <- noise
out <- (agents$initialDecision[mask] * agents$selfWeight[mask]) +
((1 - agents$selfWeight[mask]) * (agents$advice[mask] + noise))
#out <- clamp(out, 100)
out[is.na(out)] <- agents$initialDecision[mask][is.na(out)]
agents$roll[mask] <- roll
agents$finalDecision[mask] <- out
}
return(agents)
}
# World state functions - return 50 and return 0-49|51-100 ####
staticWorldStateFun = function(modelParams, world) {
return(50)
}
variableWorldStateFun = function(modelParams, world) {
return(rnorm(1, 50, 1))
}
# Advice functions - there's noisy advice, bad advice, and confidence-weighted advice ####
noisyAdviceFun <- function(modelParams, agents, world, ties) {
adviceNoise <- ifelse(modelParams$other$manipulation > 0,
modelParams$other$adviceNoise[modelParams$other$manipulation],
0)
mask <- which(agents$generation == world$generation)
agents$advisor[mask] <- apply(ties, 1, function(x) sample(which(x != 0),1))
# Fetch advice as a vector
n <- length(mask)
agents$advice[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[mask][agents$advisor[mask]]
+ adviceNoise,
Inf))
agents$advice[mask] <- clamp(agents$advice[mask], 100)
return(agents)
}
badAdviceFun <- function(modelParams, agents, world, ties) {
badAdviceProb <- ifelse(modelParams$other$manipulation > 0,
modelParams$other$adviceNoise[modelParams$other$manipulation]/100,
0)
mask <- which(agents$generation == world$generation)
agents$advisor[mask] <- apply(ties, 1, function(x) sample(which(x != 0),1))
# Fetch advice as a vector
n <- length(mask)
agents$advice[mask] <- rnorm(n,
rep(world$state, n),
clamp(agents$sensitivity[mask][agents$advisor[mask]],Inf))
badActors <- mask & (runif(n) < badAdviceProb)
# bad actors give advice as plausible-but-extreme in a random direction from
# the best guess (i.e. initial estimate)
agents$advice[badActors] <- ifelse(runif(sum(badActors)) < .5,
agents$advice[badActors] + 3 * agents$sensitivity[badActors],
agents$advice[badActors] - 3 * agents$sensitivity[badActors])
return(agents)
}
confidenceAdviceFun <- function(modelParams, agents, world, ties) {
# confidence scaling magnitude implements manipulation strength
mag <- ifelse(
modelParams$other$manipulation > 0,
modelParams$other$adviceNoise[modelParams$other$manipulation],
0
)
mask <- which(agents$generation == world$generation)
agents$advisor[mask] <- apply(ties, 1, function(x) sample(which(x != 0),1))
# Fetch advice as a vector
n <- length(mask)
midpoint <- 50
# answer with confidence is obtained by: percept - 50 (halfway point)
agents$advice[mask] <- rnorm(
n,
rep(world$state, n),
clamp(agents$sensitivity[mask][agents$advisor[mask]], Inf)
) - midpoint
# Scale for advisor confidence expression
agents$advice[mask] <- agents$advice[mask] *
(agents$confidenceScaling[mask][agents$advisor[mask]] * mag + 1)
agents$advice[mask] <- clamp(agents$advice[mask], midpoint, -midpoint)
# Scale for judge confidence interpretation
agents$advice[mask] <- agents$advice[mask] /
(agents$confidenceScaling[mask] * mag + 1)
agents$advice[mask] <- agents$advice[mask] + midpoint
return(agents)
}
for (r in 1:runCount) {
for (adviceType in 3:1) {
# Storage path for results
resultsPath <- ifelse(ARC,'results/','results/')
time <- format(Sys.time(), "%F_%H-%M-%S")
# Clear the result storage variables
suppressWarnings(rm('rawdata'))
# Parameter space to explore
specs <- list()
for (s in 1) {
for (x in 1:7) {
specs[[length(specs) + 1]] <- list(
agents = 1000,
startingSelfWeight = .45, # neither optimal nor discounted
degree = 10,
generations = 100,
decisions = 60,
sensitivity = s,
sensitivitySD = s,
adviceNoise = seq(0,2,.3),
manipulation = x,
wd = getwd(),
saveEveryNthGeneration = 1,
maxGenerations = 500,
getWorldStateFun = staticWorldStateFun,
getDecisionFun = uncappedWeightedAvgFun,
shortDesc = 'Weighted-Average'
)
}
}
# Noisy advice = advice made with +adviceNoise sd on error
if (adviceType == 1) {
for (i in 1:length(specs)) {
specs[[i]]$getAdviceFun <- noisyAdviceFun
specs[[i]]$shortDesc <- paste(specs[[i]]$shortDesc, 'with noisy advice')
}
# Bad advice = advice which is 3*mean sensitivity in the opposite direction
} else if (adviceType == 2) {
for (i in 1:length(specs)) {
specs[[i]]$getAdviceFun <- badAdviceFun
specs[[i]]$shortDesc <- paste(specs[[i]]$shortDesc, 'with bad advice')
}
# Confidence communication means agents have their own understanding of answers
} else if (adviceType == 3) {
for (i in 1:length(specs)) {
specs[[i]]$getAdviceFun <- confidenceAdviceFun
specs[[i]]$shortDesc <- paste(specs[[i]]$shortDesc, 'with confidence communication')
specs[[i]]$getWorldStateFun <- variableWorldStateFun
}
}
# Run the models
# Run parallel repetitions of the model with these settings
startTime <- Sys.time()
print(paste0("Starting run ", r, "/", runCount))
print(paste('Processing models:', specs[[1]]$shortDesc))
if (!ARC) {
degreeResults <- lapply(specs, runModel)
} else {
print('Executing parallel operations...')
degreeResults <- parLapply(cl, specs, runModel)
}
print('...combining results...')
# Join up results
for (res in degreeResults) {
if (!exists('rawdata'))
rawdata <- list(res$rawdata)
else
rawdata[[length(rawdata) + 1]] <- res$rawdata
}
print(paste0('...complete.'))
print(Sys.time() - startTime)
print(paste0('Estimated data size: ', object.size(rawdata) * 1e-6, 'MB'))
print('Saving data...')
# Save data with a nice name
resultsPath <- paste0(resultsPath, time, '_',
sub(" ", "-",
sub(" decisions with ", "_", specs[[1]]$shortDesc)))
save(rawdata, file = paste0(resultsPath, '_rawdata.Rdata'))
# Smaller datafile for stopping me running out of memory during analysis
allAgents <- NULL
#allDecisions <- NULL
for (rd in rawdata) {
rd$agents$agentCount <- rep(rd$model$agentCount,nrow(rd$agents))
rd$agents$agentDegree <- rep(rd$model$agentDegree,nrow(rd$agents))
rd$agents$decisionCount <- rep(rd$model$decisionCount,nrow(rd$agents))
rd$agents$modelDuration <- rep(sum(rd$duration),nrow(rd$agents))
rd$agents$meanSensitivity <- rep(rd$model$other$sensitivity,nrow(rd$agents))
rd$agents$sdSensitivity <- rep(rd$model$other$sensitivitySD,nrow(rd$agents))
rd$agents$manipulation <- rep(rd$model$other$manipulation,nrow(rd$agents))
rd$agents$manipulationValue <- rd$model$other$adviceNoise[rd$agents$manipulation]
rd$agents$description <- rep(rd$model$other$shortDesc, nrow(rd$agents))
# only take a subset because of memory limitations
allAgents <- rbind(allAgents, rd$agents)
# allAgents <- rbind(allAgents, rd$agents[rd$agents$generation %% 50 == 1
# | (rd$agents$generation %% 25 == 1 & rd$agents$generation < 250), ])
#allDecisions <- rbind(allDecisions, rd$decisions[rd$decisions$generation %in% allAgents$generation, ])
}
allAgents$manipulationValue <- factor(allAgents$manipulationValue)
save(allAgents, resultsPath,
file = paste0(resultsPath, '_rawdata-subset.Rdata'))
# Plots
# Inspect both variables for their evolution over time
gg.selfWeight <- ggplot(allAgents, aes(x = generation, y = selfWeight,
fill = manipulationValue)) +
geom_hline(yintercept = 0.5, linetype = 'dashed') +
stat_summary(geom = 'ribbon', fun.data = mean_cl_boot,
fun.args = (conf.int = .99), alpha = 1, linetype = 0) +
scale_y_continuous(limits = c(0,1)) +
labs(title = allAgents$description[1], y = "self weight") +
style +
theme(legend.position = "top")
# Inspect fitness correlations of each variable
predictors <- c('selfWeight')
# bin the parameter values
for (v in predictors)
allAgents[, paste0(v, ".cat")] <- cut(allAgents[, v],
breaks = seq(0, 1.1, 0.1),
ordered_result = T,
right = F)
# reshape the data for neat plotting
tmp <- gather(allAgents[, c("fitness", "manipulationValue",
paste0(predictors, ".cat"))],
"parameter", "egocentricity", 3:(2 + length(predictors)),
factor_key = T)
gg.fitness <- ggplot(tmp, aes(x = egocentricity, y = fitness,
colour = manipulationValue,
fill = manipulationValue)) +
stat_summary(geom = "point", aes(group = manipulationValue), size = 3,
fun = "mean") +
geom_smooth(method = "lm", formula = y ~ x, aes(group = manipulationValue), se = F) +
scale_y_continuous(limits = c(quantile(tmp$fitness, seq(0, 1, 0.05)[2]),
0)) +
facet_grid(.~parameter) +
style
gg <- gg.selfWeight / gg.fitness
ggsave(paste0(resultsPath, '_graph.png'), gg,
width = 11.2, height = 11.2, dpi = 1000)
print('...data saved.')
}
}
# Cleanup
if (ARC)
stopCluster(cl)
print('Complete.')