-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathconvexset.jl
914 lines (764 loc) · 28.5 KB
/
convexset.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
using UnsafeArrays
import Base: showarg, eltype
const DSYEVR_ = (BLAS.@blasfunc(dsyevr_),Base.liblapack_name)
const SSYEVR_ = (BLAS.@blasfunc(ssyevr_),Base.liblapack_name)
# ----------------------------------------------------
# Zero cone
# ----------------------------------------------------
"""
ZeroSet(dim)
Creates the zero set ``\\{ 0 \\}^{dim}`` of dimension `dim`. If `x` ∈ `ZeroSet` then all entries of x are zero.
"""
struct ZeroSet{T} <: AbstractConvexCone{T}
dim::Int
function ZeroSet{T}(dim::Int) where {T}
dim >= 0 ? new(dim) : throw(DomainError(dim, "dimension must be nonnegative"))
end
end
ZeroSet(dim) = ZeroSet{DefaultFloat}(dim)
function project!(x::AbstractVector{T}, ::ZeroSet{T}) where{T}
x .= zero(T)
return nothing
end
function in_dual(x::AbstractVector{T}, ::ZeroSet{T}, tol::T) where{T}
true
end
function in_pol_recc(x::AbstractVector{T}, ::ZeroSet{T}, tol::T) where{T}
!any( x-> (abs(x) > tol), x)
end
function allocate_memory!(cone::AbstractConvexSet{T}) where {T}
return nothing
end
# ----------------------------------------------------
# Nonnegative orthant
# ----------------------------------------------------
"""
Nonnegatives(dim)
Creates the nonnegative orthant ``\\{ x \\in \\mathbb{R}^{dim} : x \\ge 0 \\}`` of dimension `dim`.
"""
struct Nonnegatives{T} <: AbstractConvexCone{T}
dim::Int
constr_type::BitArray{1} #store rows of constraints that are loose (+1)
function Nonnegatives{T}(dim::Int) where {T}
dim >= 0 ? new(dim, falses(dim)) : throw(DomainError(dim, "dimension must be nonnegative"))
end
end
Nonnegatives(dim) = Nonnegatives{DefaultFloat}(dim)
"Classify the inequality constraints as loose, if b very large, as s = -Ax + b >= 0."
function classify_constraints!(constr_type::BitArray, b::AbstractVector{T}, COSMO_INFTY::Real, MIN_SCALING::Real) where {T}
for i = 1:length(b)
if b[i] > COSMO_INFTY * MIN_SCALING
constr_type[i] = true
end
end
return nothing
end
function project!(x::AbstractVector{T}, C::Nonnegatives{T}) where{T}
x .= max.(x, zero(T))
return nothing
end
function in_dual(x::AbstractVector{T}, ::Nonnegatives{T}, tol::T) where{T}
!any( x-> (x < -tol), x)
end
function in_pol_recc(x::AbstractVector{T}, ::Nonnegatives{T}, tol::T) where{T}
!any( x-> (x > tol), x)
end
# ----------------------------------------------------
# Second Order Cone
# ----------------------------------------------------
"""
SecondOrderCone(dim)
Creates the second-order cone (or Lorenz cone) ``\\{ (t,x) \\in \\mathrm{R}^{dim} : || x ||_2 \\leq t \\}``.
"""
struct SecondOrderCone{T} <: AbstractConvexCone{T}
dim::Int
function SecondOrderCone{T}(dim::Int) where {T}
dim >= 0 ? new(dim) : throw(DomainError(dim, "dimension must be nonnegative"))
end
end
SecondOrderCone(dim) = SecondOrderCone{DefaultFloat}(dim)
function project!(x::AbstractVector{T}, ::SecondOrderCone{T}) where{T}
t = x[1]
xt = view(x, 2:length(x))
norm_x = norm(xt, 2)
if norm_x <= t
nothing
elseif norm_x <= -t
x[:] .= zero(T)
else
x[1] = (norm_x + t) / 2
#x(2:end) assigned via view
@. xt = (norm_x + t) / (2 * norm_x) * xt
end
return nothing
end
function in_dual(x::AbstractVector{T}, ::SecondOrderCone{T}, tol::T) where{T}
@views norm(x[2:end]) <= (tol + x[1]) #self dual
end
function in_pol_recc(x::AbstractVector{T}, ::SecondOrderCone, tol::T) where{T}
@views norm(x[2:end]) <= (tol - x[1]) #self dual
end
# ----------------------------------------------------
# Positive Semidefinite Cone
# ----------------------------------------------------
#a type to maintain internal workspace data for the BLAS syevr function
mutable struct PsdBlasWorkspace{T}
m::Base.RefValue{BLAS.BlasInt}
w::Vector{T}
Z::Matrix{T}
isuppz::Vector{BLAS.BlasInt}
work::Vector{T}
lwork::BLAS.BlasInt
iwork::Vector{BLAS.BlasInt}
liwork::BLAS.BlasInt
info::Base.RefValue{BLAS.BlasInt}
function PsdBlasWorkspace{T}(n::Integer) where{T}
BlasInt = BLAS.BlasInt
#workspace data for BLAS
m = Ref{BlasInt}()
w = Vector{T}(undef,n)
Z = Matrix{T}(undef,n,n)
isuppz = Vector{BlasInt}(undef, 2*n)
work = Vector{T}(undef, 1)
lwork = BlasInt(-1)
iwork = Vector{BlasInt}(undef, 1)
liwork = BlasInt(-1)
info = Ref{BlasInt}()
new(m,w,Z,isuppz,work,lwork,iwork,liwork,info)
end
end
for (syevr, elty) in
((DSYEVR_,:Float64),
(SSYEVR_,:Float32))
@eval begin
function _syevr!(A::AbstractMatrix{$elty}, ws::PsdBlasWorkspace{$elty})
#Float64 only support for now since we call dsyevr_ directly
n = size(A,1)
ldz = n
lda = stride(A,2)
ccall($syevr, Cvoid,
(Ref{UInt8}, Ref{UInt8}, Ref{UInt8}, Ref{BLAS.BlasInt},
Ptr{$elty}, Ref{BLAS.BlasInt}, Ref{$elty}, Ref{$elty},
Ref{BLAS.BlasInt}, Ref{BLAS.BlasInt}, Ref{$elty}, Ptr{BLAS.BlasInt},
Ptr{$elty}, Ptr{$elty}, Ref{BLAS.BlasInt}, Ptr{BLAS.BlasInt},
Ptr{$elty}, Ref{BLAS.BlasInt}, Ptr{BLAS.BlasInt}, Ref{BLAS.BlasInt},
Ptr{BLAS.BlasInt}),
'V', 'A', 'U', n,
A, max(1,lda), 0.0, 0.0,
0, 0, -1.0,
ws.m, ws.w, ws.Z, ldz, ws.isuppz,
ws.work, ws.lwork, ws.iwork, ws.liwork,
ws.info)
LAPACK.chklapackerror(ws.info[])
end
end #@eval
end #for
function _project!(X::AbstractMatrix, ws::PsdBlasWorkspace{T}) where{T}
#computes the upper triangular part of the projection of X onto the PSD cone
#allocate additional workspace arrays if the ws
#work and iwork have not yet been sized
if ws.lwork == -1
_syevr!(X,ws)
ws.lwork = BLAS.BlasInt(real(ws.work[1]))
resize!(ws.work, ws.lwork)
ws.liwork = ws.iwork[1]
resize!(ws.iwork, ws.liwork)
end
# below LAPACK function does the following: w,Z = eigen!(Symmetric(X))
_syevr!(X, ws)
# compute upper triangle of: X .= Z*Diagonal(max.(w, 0.0))*Z'
rank_k_update!(X, ws)
end
function rank_k_update!(X::AbstractMatrix, ws::COSMO.PsdBlasWorkspace{T}) where{T}
n = size(X, 1)
X .= 0
nnz_λ = 0
for j = 1:length(ws.w)
λ = ws.w[j]
if λ > 0
nnz_λ += 1
@inbounds for i = 1:n
ws.Z[i, j] = ws.Z[i, j] * sqrt(λ)
end
end
end
if nnz_λ > 0
V = uview(ws.Z, :, (n - nnz_λ + 1):n)
BLAS.syrk!('U', 'N', 1.0, V, 1.0, X)
end
return nothing
end
"""
PsdCone(dim)
Creates the cone of symmetric positive semidefinite matrices ``\\mathcal{S}_+^{dim}``. The entries of the matrix `X` are stored column-by-column in the vector `x` of dimension `dim`.
Accordingly ``X \\in \\mathbb{S}_+ \\Rightarrow x \\in \\mathcal{S}_+^{dim}``, where ``X = \\text{mat}(x)``.
"""
struct PsdCone{T} <: AbstractConvexCone{T}
dim::Int
sqrt_dim::Int
work::PsdBlasWorkspace{T}
tree_ind::Int64 # tree number that this cone belongs to
clique_ind::Int64
function PsdCone{T}(dim::Int, tree_ind::Int64, clique_ind::Int64) where{T}
dim >= 0 || throw(DomainError(dim, "dimension must be nonnegative"))
iroot = isqrt(dim)
iroot^2 == dim || throw(DomainError(dim, "dimension must be a square"))
new(dim, iroot, PsdBlasWorkspace{T}(iroot), tree_ind, clique_ind)
end
end
PsdCone(dim) = PsdCone{DefaultFloat}(dim)
PsdCone{T}(dim::Int64) where{T} = PsdCone{T}(dim, 0, 0)
struct DensePsdCone{T} <: AbstractConvexCone{T}
dim::Int
sqrt_dim::Int
work::PsdBlasWorkspace{T}
function DensePsdCone{T}(dim::Int) where{T}
dim >= 0 || throw(DomainError(dim, "dimension must be nonnegative"))
iroot = isqrt(dim)
iroot^2 == dim || throw(DomainError(dim, "dimension must be a square"))
new(dim, iroot, PsdBlasWorkspace{T}(iroot))
end
end
DensePsdCone(dim) = DensePsdCone{DefaultFloat}(dim)
function project!(x::AbstractVector{T}, cone::Union{PsdCone{T}, DensePsdCone{T}}) where{T}
n = cone.sqrt_dim
# handle 1D case
if length(x) == 1
x .= max(x[1], zero(T))
else
# symmetrized square view of x
X = reshape(x, n, n)
symmetrize_upper!(X)
_project!(X,cone.work)
#fill in the lower triangular part
for j=1:n, i=1:(j-1)
X[j,i] = X[i,j]
end
end
return nothing
end
# Notice that this is an in-place version that uses x as workspace
function in_dual!(x::AbstractVector{T}, cone::Union{PsdCone{T}, DensePsdCone{T}}, tol::T) where{T}
n = cone.sqrt_dim
X = reshape(x, n, n)
return COSMO.is_pos_def!(X, tol)
end
in_dual(x::AbstractVector{T}, cone::Union{PsdCone{T}, DensePsdCone{T}}, tol::T) where{T} = in_dual!(copy(x), cone, tol)
function in_pol_recc!(x::AbstractVector{T}, cone::Union{PsdCone{T}, DensePsdCone{T}}, tol::T) where{T}
n = cone.sqrt_dim
X = reshape(x, n, n)
return COSMO.is_neg_def!(X, tol)
end
in_pol_recc(x::AbstractVector{T}, cone::Union{PsdCone{T}, DensePsdCone{T}}, tol::T) where{T} = in_pol_recc!(copy(x), cone, tol)
# ----------------------------------------------------
# Positive Semidefinite Cone (Triangle)
# ----------------------------------------------------
# Psd cone given by upper-triangular entries of matrix
"""
PsdConeTriangle(dim)
Creates the cone of symmetric positive semidefinite matrices. The entries of the upper-triangular part of matrix `X` are stored in the vector `x` of dimension `dim`.
A ``r \\times r`` matrix has ``r(r+1)/2`` upper triangular elements and results in a vector of ``\\mathrm{dim} = r(r+1)/2``.
### Examples
The matrix
```math
\\begin{bmatrix} x_1 & x_2 & x_4\\\\ x_2 & x_3 & x_5\\\\ x_4 & x_5 & x_6 \\end{bmatrix}
```
is transformed to the vector ``[x_1, x_2, x_3, x_4, x_5, x_6]^\\top `` with corresponding constraint `PsdConeTriangle(6)`.
"""
mutable struct PsdConeTriangle{T} <: AbstractConvexCone{T}
dim::Int #dimension of vector
sqrt_dim::Int # side length of matrix
X::Array{T,2}
work::PsdBlasWorkspace{T}
tree_ind::Int64 # tree number that this cone belongs to
clique_ind::Int64
function PsdConeTriangle{T}(dim::Int, tree_ind::Int64, clique_ind::Int64) where{T}
dim >= 0 || throw(DomainError(dim, "dimension must be nonnegative"))
side_dimension = Int(sqrt(0.25 + 2 * dim) - 0.5);
new(dim, side_dimension, zeros(side_dimension, side_dimension), PsdBlasWorkspace{T}(side_dimension), tree_ind, clique_ind)
end
end
PsdConeTriangle(dim) = PsdConeTriangle{DefaultFloat}(dim)
PsdConeTriangle{T}(dim::Int64) where{T} = PsdConeTriangle{T}(dim, 0, 0)
DecomposableCones{T} = Union{PsdCone{T}, PsdConeTriangle{T}}
mutable struct DensePsdConeTriangle{T} <: AbstractConvexCone{T}
dim::Int #dimension of vector
sqrt_dim::Int # side length of matrix
X::Array{T,2}
work::PsdBlasWorkspace{T}
function DensePsdConeTriangle{T}(dim::Int) where{T}
dim >= 0 || throw(DomainError(dim, "dimension must be nonnegative"))
side_dimension = Int(sqrt(0.25 + 2 * dim) - 0.5);
new(dim, side_dimension, zeros(side_dimension, side_dimension), PsdBlasWorkspace{T}(side_dimension))
end
end
DensePsdConeTriangle(dim) = DensePsdConeTriangle{DefaultFloat}(dim)
function project!(x::AbstractArray, cone::Union{PsdConeTriangle{T}, DensePsdConeTriangle{T}}) where{T}
# handle 1D case
if length(x) == 1
x .= max(x[1],zero(T))
else
populate_upper_triangle!(cone.X, x, 1 / sqrt(2))
_project!(cone.X,cone.work)
extract_upper_triangle!(cone.X, x, sqrt(2) )
end
return nothing
end
# Notice that we are using a (faster) in-place version that modifies the input
function in_dual!(x::AbstractVector{T}, cone::Union{PsdConeTriangle{T}, DensePsdConeTriangle{T}}, tol::T) where{T}
n = cone.sqrt_dim
populate_upper_triangle!(cone.X, x, 1 / sqrt(2))
return COSMO.is_pos_def!(cone.X, tol)
end
in_dual(x::AbstractVector{T}, cone::Union{PsdConeTriangle{T}, DensePsdConeTriangle{T}}, tol::T) where {T} = in_dual!(x, cone, tol)
function in_pol_recc!(x::AbstractVector{T}, cone::Union{PsdConeTriangle{T}, DensePsdConeTriangle{T}}, tol::T) where{T}
n = cone.sqrt_dim
populate_upper_triangle!(cone.X, x, 1 / sqrt(2))
Xs = Symmetric(cone.X)
return COSMO.is_neg_def!(cone.X, tol)
end
in_pol_recc(x::AbstractVector{T}, cone::Union{PsdConeTriangle{T}, DensePsdConeTriangle{T}}, tol::T) where {T} = in_pol_recc!(x, cone, tol)
function allocate_memory!(cone::Union{PsdConeTriangle{T}, DensePsdConeTriangle{T}}) where {T}
cone.X = zeros(cone.sqrt_dim, cone.sqrt_dim)
end
function populate_upper_triangle!(A::AbstractMatrix, x::AbstractVector, scaling_factor::Float64)
k = 0
for j in 1:size(A, 2)
for i in 1:j
k += 1
if i != j
A[i, j] = scaling_factor * x[k]
else
A[i, j] = x[k]
end
end
end
nothing
end
function extract_upper_triangle!(A::AbstractMatrix, x::AbstractVector, scaling_factor::Float64)
k = 0
for j in 1:size(A, 2)
for i in 1:j
k += 1
if i != j
x[k] = scaling_factor * A[i, j]
else
x[k] = A[i, j]
end
end
end
nothing
end
"""
ExponentialCone(MAX_ITERS = 100, EXP_TOL = 1e-8)
Creates the exponential cone ``\\mathcal{K}_{exp} = \\{(x, y, z) \\mid y \\geq 0 ye^{x/y} ≤ z\\} \\cup \\{ (x,y,z) \\mid x \\leq 0, y = 0, z \\geq 0 \\}``
"""
struct ExponentialCone{T} <: AbstractConvexCone{T}
dim::Int
v0::Vector{T}
MAX_ITER::Int64
EXP_TOL::Float64
function ExponentialCone{T}(dim = 3, MAX_ITERS = 100, EXP_TOL = 1e-8) where{T}
new(3, zeros(T, 3), MAX_ITERS, EXP_TOL)
end
end
ExponentialCone(args...) = ExponentialCone{DefaultFloat}(args...)
function project!(v::AbstractVector{T}, cone::ExponentialCone{T}) where{T}
# Check the four different cases
# 1. v in K_exp => v = v
in_cone(v, cone, 0.) && return nothing
# 2. -v in K_exp^* => v = 0
if in_dual(-v, cone, 0.)
v .= zero(T)
return nothing
end
# 3. x < 0 and y < 0 => v = (x, 0, max(z, 0))
if v[1] < 0 && v[2] < 0
v[2] = 0.0
v[3] = max(v[3], 0)
return nothing
end
# 4. Otherwise solve the following minimisation problem
# min_w (1/2) ||v - v0||_2^2
# s.t. y * exp(x/y) == z
# y > 0
project_exp!(v, cone)
end
# This is a modified version of the projection code used in SCS
# https://github.com/cvxgrp/scs/blob/master/src/cones.c
# We are solving the dual problem g(λ) via a bisection method
function project_exp!(v::AbstractVector{T}, cone::ExponentialCone{T}) where{T}
# save input vector and use v as working variable
@. cone.v0 = v
l, u = get_bisection_bounds(v, cone.v0, cone.EXP_TOL)
for k = 1:cone.MAX_ITER
λ = (u + l) / 2
g = grad_dual!(λ, v, cone.v0, cone.EXP_TOL)
g > 0 ? (l = λ) : (u = λ)
u - l < cone.EXP_TOL && break
end
end
function get_bisection_bounds(v::AbstractVector{T}, v0::Vector{T}, tol::Float64) where {T <: Real}
l = 0.
λ = 0.125
g = grad_dual!(λ, v, v0, tol)
while g > 0
l = λ
λ *= 2
g = grad_dual!(λ, v, v0, tol)
end
u = λ
return l, u
end
function grad_dual!(λ::T, v::AbstractVector{T}, v0::Vector{T}, tol::Float64) where {T <: Real}
find_minimizers!(λ, v, v0, tol)
v[2] == 0 ? (g = v[1]) : (g = v[1] + v[2] * log(v[2] / v[3]))
return g
end
function find_minimizers!(λ::T, v::AbstractVector{T}, v0::Vector{T}, tol::Float64) where {T <: Real}
v[3] = find_min_t(λ, v0[2], v0[3], tol)
# s* = (t - t0) * t / λ
v[2] = (1 / λ) * (v[3] - v0[3]) * v[3]
# r* = r0 - λ
v[1] = v0[1] - λ
end
# use Newton method to find minimizer t* for given λ, i.e. find the zero of
# f(t) = t * (t - t0) / lambda - s0 + λ * log( t - t0 / λ) + λ
# Define Δt = t - t0
function find_min_t(λ::T, s0::T, t0::T, tol::Float64) where {T <:Real}
Δt = max(-t0, tol)
for k = 1:150
f = Δt * (Δt + t0) / λ^2 - s0 / λ + log(Δt / λ) + 1
grad_f = (2 * Δt + t0) / λ^2 + 1 / Δt
Δt = Δt - f / grad_f
if (Δt <= -t0)
Δt = -t0
break
elseif (Δt <= 0)
Δt = 0
break
elseif abs(f) < tol
break
end
end
return Δt + t0
end
function in_cone(v::AbstractVector{T}, cone::ExponentialCone{T}, tol::T) where{T}
x = v[1]
y = v[2]
z = v[3]
return (y > 0 && y * exp(x/y) <= z + tol) || (x <= tol && y == 0. && z >= -tol )
end
# Kexp^* = { (x,y,z) | x < 0, -xe^(y/x) <= e^1 z } cup { (0,y,z) | y >= 0,z >= 0 }
function in_dual(v::AbstractVector{T}, cone::ExponentialCone{T}, tol::T) where{T}
x = v[1]
y = v[2]
z = v[3]
return (x < 0 && -x * exp(y / x) - exp(1) * z <= tol) || (abs(x) <= tol && y >= -tol && z >= -tol)
end
function in_pol_recc(v::AbstractVector{T},cone::ExponentialCone{T}, tol::T) where{T}
return in_dual(-v, cone, tol)
end
"""
PowerCone(alpha::Float64, MAX_ITERS::Int64 = 20, POW_TOL = 1e-8)
Creates the 3-d power cone ``\\mathcal{K}_{pow} = \\{(x, y, z) \\mid x^\\alpha y^{(1-\\alpha)} \\geq \\|z\\|, x \\geq 0, y \\geq 0 \\}`` with ``0 < \\alpha < 1``
"""
struct PowerCone{T} <: AbstractConvexCone{T}
dim::Int
α::Float64
MAX_ITER::Int64
POW_TOL::Float64
function PowerCone{T}(alpha::Float64, MAX_ITERS::Int64 = 20, POW_TOL = 1e-8) where{T}
(alpha <= 0 || alpha >= 1) && throw(DomainError("The exponent α of the power cone has to be in (0, 1)."))
new(3, alpha, MAX_ITERS, POW_TOL)
end
end
PowerCone(args...) = PowerCone{DefaultFloat}(args...)
# The projection onto the power cone is described in
# Hien - Differential properties of Euclidean projections onto power cone (2015)
function project!(v::AbstractVector{T}, cone::PowerCone{T}) where{T}
# Check the special cases first
# 1. v in K_pow => v = v
in_cone(v, cone, 0.) && return nothing
# 2. -v in K_pow^* => v .= 0
if in_dual(-v, cone, 0.)
v .= zero(T)
return nothing
end
# 3. v not in K_pow and -v not in K_pow^* and z == 0 => x = max(x, 0), y = max(y, 0)
if abs(v[3]) <= cone.POW_TOL
v[1] = max(v[1], 0)
v[2] = max(v[2], 0)
return nothing
end
# 4. Otherwise solve the following problem
# find r
# s.t. sigma(x0, y0, z0, r) == 0
# and 0 < r < ||z0||
#
# x = 0.5 * (x0 + sqrt(x0^2 + 4α*r*(||z0||-r)))
# y = 0.5 * (y0 + sqrt(y0^2 + 4(1-α)*r*(||z0||-r)))
# z = z0 * r / ||z0||
project_pow!(v, cone)
end
# find the zero of above condition for r by applying Newton's method
function project_pow!(v::AbstractVector{T}, cone::PowerCone{T}) where{T}
x0 = v[1]
y0 = v[2]
z0 = v[3]
r = abs(z0) / 2
ϕx = zero(T)
ϕy = zero(T)
# compute a zero of phi(v, r, α)
for k = 1:cone.MAX_ITER
ϕx = ϕc(x0, z0, r, cone.α)
ϕy = ϕc(y0, z0, r, 1 - cone.α)
phi = ϕ(ϕx, ϕy, r, cone.α)
abs(phi) < cone.POW_TOL && break
dϕx_dr = dϕc_dr(ϕx, x0, z0, r, cone.α)
dϕy_dr = dϕc_dr(ϕy, y0, z0, r, 1 - cone.α)
dphi_dr = dϕ_dr(ϕx, ϕy, dϕx_dr, dϕy_dr, r, cone.α)
r = r - phi / dphi_dr
# ensure 0 < r < abs(z0)
r = min(max(r, 0), abs(z0))
end
# given a solution r, update the vector components (x, y, z)
v[1] = ϕx
v[2] = ϕy
v[3] = z0 * r / abs(z0)
return nothing
end
function ϕc(x0::T, z0::T, r::T, α::T) where{T <: Real}
return max(0.5 * (x0 + sqrt(x0^2 + 4 * α * r * (abs(z0) - r))), 1e-10)
end
function dϕc_dr(ϕx::T, x0::T, z0::T, r::T, α::T) where{T <: Real}
return α / (2 * ϕx - x0) * (abs(z0) - 2 * r)
end
function ϕ(ϕx::T, ϕy::T, r::T, α::T) where{T <: Real}
return ϕx^α * ϕy^(1 - α) - r
end
# dϕ / dr = Π fi^αi * (Σ αi fi' / fi) - 1
function dϕ_dr(ϕx::T, ϕy::T, ϕx_dr::T, ϕy_dr::T, r::T, α::T) where{T <: Real}
return ϕx^α * ϕy^(1-α) * (α * ϕx_dr / ϕx + (1 - α) * ϕy_dr / ϕy) - 1
end
function in_cone(v::AbstractVector{T}, cone::PowerCone{T}, tol::T) where{T}
x = v[1]
y = v[2]
z = v[3]
α = cone.α
return x >= 0 && y >= 0 && x^α * y^(1 - α) >= abs(z) - tol
end
# Kpow^* = { (s, t, w) | (s / α)^α * (t/(1-α))^(1-α) >= abs(w), s >= 0, t >= 0 }
function in_dual(v::AbstractVector{T}, cone::PowerCone{T}, tol::T) where{T}
s = v[1]
t = v[2]
w = v[3]
α = cone.α
return s >= -tol && t >= -tol && s^α * t^(1-α) >= abs(w) * α^α * (1-α)^(1-α) - tol
end
function in_pol_recc(v::AbstractVector{T},cone::PowerCone{T}, tol::T) where{T}
return in_dual(-v, cone, tol)
end
"""
DualExponentialCone(MAX_ITERS::Int64 = 100, EXP_TOL = 1e-8)
Creates the dual exponential cone ``\\mathcal{K}^*_{exp} = \\{(x, y, z) \\mid x < 0, -xe^{y/x} \\leq e^1 z \\} \\cup \\{ (0,y,z) \\mid y \\geq 0, z \\geq 0 \\}``
"""
struct DualExponentialCone{T} <: AbstractConvexCone{T}
dim::Int
v0::Vector{T}
primal_cone::ExponentialCone{T}
function DualExponentialCone{T}(dim::Int64 = 3, MAX_ITERS::Int64 = 100, EXP_TOL = 1e-8) where{T}
new(3, zeros(T, 3), ExponentialCone{T}(dim, MAX_ITERS, EXP_TOL))
end
end
DualExponentialCone(args...) = DualExponentialCone{DefaultFloat}(args...)
"""
DualPowerCone(alpha::Float64, MAX_ITERS::Int64 = 20, POW_TOL = 1e-8)
Creates the 3-d dual power cone ``\\mathcal{K}^*_{pow} = \\{(u, v, w) \\mid \\left( \\frac{u}{\\alpha}\\right)^\\alpha \\left( \\frac{v}{1-\\alpha}\\right)^{(1-\\alpha)} \\geq \\|w\\|, u \\geq 0, v \\geq 0 \\}`` with ``0 < \\alpha < 1``
"""
struct DualPowerCone{T} <: AbstractConvexCone{T}
dim::Int
v0::Vector{T}
primal_cone::PowerCone{T}
function DualPowerCone{T}(alpha::Float64, MAX_ITERS::Int64 = 20, POW_TOL = 1e-8) where{T}
(alpha <= 0 || alpha >= 1) && throw(DomainError, "The exponent α of the dual power cone has to be in (0, 1).")
new(3, zeros(T,3), PowerCone{T}(alpha, MAX_ITERS, POW_TOL))
end
end
DualPowerCone(args...) = DualPowerCone{DefaultFloat}(args...)
DualCones = Union{DualExponentialCone, DualPowerCone}
in_cone(v::AbstractVector{T}, cone::DualCones, tol::Real) where {T <: Real} = in_dual(v, cone.primal_cone, tol)
in_dual(v::AbstractVector{T}, cone::DualCones, tol::Real) where {T <: Real} = in_cone(v, cone.primal_cone, tol)
in_pol_recc(v::AbstractVector{T}, cone::DualCones, tol::Real) where {T <: Real} = in_dual(-v, cone, tol)
# Project dual cones by using Moreau decomposition: Proj^*(v) = v + Proj(-v)
function project!(v::AbstractVector{T}, cone::DualCones) where{T}
@. cone.v0 = v
@. v *= -1.0
project!(v, cone.primal_cone)
@. v += cone.v0
end
# Union for all types where the user has to provide extra information to create the cone
ArgumentCones = Union{PowerCone, DualPowerCone}
# ----------------------------------------------------
# Box
# ----------------------------------------------------
"""
Box(l, u)
Creates a box or intervall with lower boundary vector ``l \\in \\mathbb{R}^m \\cup \\{-\\infty\\}^m`` and upper boundary vector``u \\in \\mathbb{R}^m\\cup \\{+\\infty\\}^m``.
"""
struct Box{T} <: AbstractConvexSet{T}
dim::Int
constr_type::Array{Int8} #store type of constraint {-1: loose, 0: inequality, 1: equality}
l::Vector{T}
u::Vector{T}
function Box{T}(dim::Int) where{T}
dim >= 0 || throw(DomainError(dim, "dimension must be nonnegative"))
l = fill!(Vector{T}(undef, dim), -Inf)
u = fill!(Vector{T}(undef, dim), +Inf)
return new(dim, zeros(Int8, dim), l, u)
end
function Box{T}(l::Vector{T}, u::Vector{T}) where{T}
length(l) == length(u) || throw(DimensionMismatch("bounds must be same length"))
#enforce consistent bounds
_box_check_bounds(l,u)
return new(length(l), zeros(Int8, length(l)), l, u)
end
end
Box(dim) = Box{DefaultFloat}(dim)
Box(l, u) = Box{DefaultFloat}(l, u)
function _box_check_bounds(l,u)
for i in eachindex(l)
l[i] > u[i] && error("Box set: inconsistent lower/upper bounds specified at index i = ", i, ": l[i] = ",l[i],", u[i] = ",u[i])
end
end
"Classify the type of constraint of the box into loose inequality (-1), inequality (0) or equality (+1)."
function classify_box_constraints!(box::COSMO.Box{T}, COSMO_INFTY::Real, MIN_SCALING::Real, RHO_TOL::Real) where{T}
@inbounds for i = 1:length(box.l)
if box.l[i] < (-COSMO_INFTY * MIN_SCALING) && box.u[i] > (COSMO_INFTY * MIN_SCALING)
box.constr_type[i] = -1
elseif (box.u[i] - box.l[i]) < RHO_TOL
box.constr_type[i] = 1
else
box.constr_type[i] = 0
end
end
return nothing
end
function project!(x::AbstractVector{T}, box::Box{T}) where{T}
@. x = clip(x, box.l, box.u)
return nothing
end
function support_function(x::AbstractVector{T}, B::Box{T}, tol::T) where{T}
s = 0.
for i in eachindex(x)
s+= ( abs(x[i] > tol) && x[i] > 0) ? x[i]*B.u[i] : x[i]*B.l[i]
end
return s
end
support_function!(x::AbstractVector{T}, B::Box{T}, tol::T) where{T} = support_function(x, B, tol)
function in_pol_recc(x::AbstractVector{T}, B::Box{T}, tol::T) where{T}
!any(XU -> (XU[2] == Inf && XU[1] > tol), zip(x,B.u)) && !any(XL -> (XL[2] == -Inf && XL[1] < -tol), zip(x,B.l))
end
function scale!(box::Box{T}, e::AbstractVector{T}) where{T}
@. box.l = box.l * e
@. box.u = box.u * e
return nothing
end
function Base.deepcopy(box::Box{T}) where {T}
Box{T}(deepcopy(box.l), deepcopy(box.u))
end
# ----------------------------------------------------
# Composite Set
# ----------------------------------------------------
#struct definition is provided in projections.jl, since it
#must be available to SplitVector, which in turn must be
#available for most of the methods here.
CompositeConvexSet(args...) = CompositeConvexSet{DefaultFloat}(args...)
function project!(x::SplitVector{T}, C::CompositeConvexSet{T}) where{T}
@assert x.split_by === C
foreach(xC -> project!(xC[1], xC[2]), zip(x.views, C.sets))
return nothing
end
function support_function!(x::SplitVector{T}, C::CompositeConvexSet{T}, tol::T) where{T}
sum(xC -> support_function!(xC[1], xC[2], tol), zip(x.views, C.sets))
end
function in_pol_recc(x::SplitVector{T}, C::CompositeConvexSet{T}, tol::T) where{T}
all(xC -> in_pol_recc(xC[1], xC[2], tol), zip(x.views, C.sets))
end
function in_pol_recc!(x::SplitVector{T}, C::CompositeConvexSet{T}, tol::T) where{T}
all(xC -> in_pol_recc!(xC[1], xC[2], tol), zip(x.views, C.sets))
end
function scale!(C::CompositeConvexSet{T}, e::SplitVector{T}) where{T}
@assert e.split_by === C
for i = eachindex(C.sets)
scale!(C.sets[i], e.views[i])
end
end
function rectify_scaling!(E::SplitVector{T},
work::SplitVector{T},
C::CompositeConvexSet{T}) where {T}
@assert E.split_by === C
@assert work.split_by === C
any_changed = false
for i = eachindex(C.sets)
any_changed |= rectify_scaling!(E.views[i], work.views[i], C.sets[i])
end
return any_changed
end
#-------------------------
# general AbstractConvexCone operations
#-------------------------
# sup_{z in K_tilde_b = {-K} x {b} } <z,δy> = { <y,b> ,if y in Ktilde_polar
# +∞ ,else}
function support_function(y::SplitView{T}, cone::AbstractConvexCone{T}, tol::T) where{T}
in_dual(-y, cone, tol) ? 0. : Inf;
end
# An in-place method that is faster, but uses the input variable y as workspace
function support_function!(y::SplitView{T}, cone::AbstractConvexCone{T}, tol::T) where{T}
@. y *= - one(T)
in_dual!(y, cone, tol) ? 0. : Inf;
end
# Notice: for every convex set apart from PsdCone and PsdConeTriangle use the normal non-modifying function
# for PsdCone and PsdConeTriangle we are using (faster) in-place functions.
function in_dual!(x::AbstractVector{T}, cone::AbstractConvexSet{T}, tol::T) where{T}
return in_dual(x, cone, tol)
end
function in_pol_recc!(x::AbstractVector{T}, cone::AbstractConvexSet{T}, tol::T) where{T}
return in_pol_recc(x, cone, tol)
end
function scale!(cone::AbstractConvexCone{T}, ::AbstractVector{T}) where{T}
return nothing
end
function rectify_scaling!(E, work, set::Union{SecondOrderCone{T}, PsdCone{T}, DensePsdCone{T}, PsdConeTriangle{T}, DensePsdConeTriangle{T}, PowerCone{T}, DualPowerCone{T}, ExponentialCone{T}, DualExponentialCone{T}}) where{T}
return rectify_scalar_scaling!(E, work)
end
rectify_scaling!(E, work, set::Union{ZeroSet{<:Real}, Nonnegatives{<:Real}, Box{<:Real}}) = false
#-------------------------
# generic set operations
#-------------------------
# function Base.showarg(io::IO, C::AbstractConvexSet{T}, toplevel) where{T}
# print(io, typeof(C), " in dimension '", A.dim, "'")
# end
eltype(::AbstractConvexSet{T}) where{T} = T
num_subsets(C::AbstractConvexSet{T}) where{T} = 1
num_subsets(C::CompositeConvexSet{T}) where{T} = length(C.sets)
function get_subset(C::AbstractConvexSet, idx::Int)
idx == 1 || throw(DimensionMismatch("Input only has 1 subset (itself)"))
return C
end
get_subset(C::CompositeConvexSet, idx::Int) = C.sets[idx]
function rectify_scalar_scaling!(E, work)
tmp = mean(E)
work .= tmp ./ E
return true
end
# computes the row indices of A,b for each convex set
function get_set_indices(sets::Array{COSMO.AbstractConvexSet, 1})
sidx = 0
indices = Array{UnitRange{Int64}, 1}(undef, length(sets))
for i = eachindex(sets)
indices[i] = (sidx + 1) : (sidx + sets[i].dim)
sidx += sets[i].dim
end
return indices
end