forked from NethermindEth/starknet.go
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcurve.go
286 lines (240 loc) · 9.64 KB
/
curve.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
package caigo
/*
Although the library adheres to the 'elliptic/curve' interface.
All testing has been done against library function explicity.
It is recommended to use in the same way(i.e. `curve.Sign` and not `ecdsa.Sign`).
*/
import (
"crypto/elliptic"
_ "embed"
"encoding/json"
"fmt"
"log"
"math/big"
)
var Curve StarkCurve
/*
Returned stark curve includes several values above and beyond
what the 'elliptic' interface calls for to facilitate common starkware functions
*/
type StarkCurve struct {
*elliptic.CurveParams
EcGenX *big.Int
EcGenY *big.Int
MinusShiftPointX *big.Int
MinusShiftPointY *big.Int
Max *big.Int
Alpha *big.Int
ConstantPoints [][]*big.Int
}
//go:embed pedersen_params.json
var PedersenParamsRaw []byte
var PedersenParams StarkCurvePayload
// struct definition for parsing 'pedersen_params.json'
type StarkCurvePayload struct {
License []string `json:"_license"`
Comment string `json:"_comment"`
FieldPrime *big.Int `json:"FIELD_PRIME"`
FieldGen int `json:"FIELD_GEN"`
EcOrder *big.Int `json:"EC_ORDER"`
Alpha int64 `json:"ALPHA"`
Beta *big.Int `json:"BETA"`
ConstantPoints [][]*big.Int `json:"CONSTANT_POINTS"`
}
func init() {
if err := json.Unmarshal(PedersenParamsRaw, &PedersenParams); err != nil {
log.Fatalf("unmarshalling pedersen params: %v", err)
}
if len(PedersenParams.ConstantPoints) == 0 {
panic("decoding pedersen params json")
}
Curve.CurveParams = &elliptic.CurveParams{Name: "stark-curve-with-constants"}
Curve.P = PedersenParams.FieldPrime
Curve.N = PedersenParams.EcOrder
Curve.B = PedersenParams.Beta
Curve.Gx = PedersenParams.ConstantPoints[0][0]
Curve.Gy = PedersenParams.ConstantPoints[0][1]
Curve.EcGenX = PedersenParams.ConstantPoints[1][0]
Curve.EcGenY = PedersenParams.ConstantPoints[1][1]
Curve.MinusShiftPointX, _ = new(big.Int).SetString("2089986280348253421170679821480865132823066470938446095505822317253594081284", 10) // MINUS_SHIFT_POINT = (SHIFT_POINT[0], FIELD_PRIME - SHIFT_POINT[1])
Curve.MinusShiftPointY, _ = new(big.Int).SetString("1904571459125470836673916673895659690812401348070794621786009710606664325495", 10)
Curve.Max, _ = new(big.Int).SetString("3618502788666131106986593281521497120414687020801267626233049500247285301248", 10) // 2 ** 251
Curve.Alpha = big.NewInt(PedersenParams.Alpha)
Curve.BitSize = 252
Curve.ConstantPoints = PedersenParams.ConstantPoints
/*
Not all operations require a stark curve initialization
including the provided constant points. Here you can
initialize the curve without the constant points
*/
Curve.CurveParams = &elliptic.CurveParams{Name: "stark-curve"}
Curve.P, _ = new(big.Int).SetString("3618502788666131213697322783095070105623107215331596699973092056135872020481", 10) // Field Prime ./pedersen_json
Curve.N, _ = new(big.Int).SetString("3618502788666131213697322783095070105526743751716087489154079457884512865583", 10) // Order of base point ./pedersen_json
Curve.B, _ = new(big.Int).SetString("3141592653589793238462643383279502884197169399375105820974944592307816406665", 10) // Constant of curve equation ./pedersen_json
Curve.Gx, _ = new(big.Int).SetString("2089986280348253421170679821480865132823066470938446095505822317253594081284", 10) // (x, _) of basepoint ./pedersen_json
Curve.Gy, _ = new(big.Int).SetString("1713931329540660377023406109199410414810705867260802078187082345529207694986", 10) // (_, y) of basepoint ./pedersen_json
Curve.EcGenX, _ = new(big.Int).SetString("874739451078007766457464989774322083649278607533249481151382481072868806602", 10)
Curve.EcGenY, _ = new(big.Int).SetString("152666792071518830868575557812948353041420400780739481342941381225525861407", 10)
Curve.MinusShiftPointX, _ = new(big.Int).SetString("2089986280348253421170679821480865132823066470938446095505822317253594081284", 10) // MINUS_SHIFT_POINT = (SHIFT_POINT[0], FIELD_PRIME - SHIFT_POINT[1])
Curve.MinusShiftPointY, _ = new(big.Int).SetString("1904571459125470836673916673895659690812401348070794621786009710606664325495", 10) // MINUS_SHIFT_POINT = (SHIFT_POINT[0], FIELD_PRIME - SHIFT_POINT[1])
Curve.Max, _ = new(big.Int).SetString("3618502788666131106986593281521497120414687020801267626233049500247285301248", 10) // 2 ** 251
Curve.Alpha = big.NewInt(1)
Curve.BitSize = 252
}
// Gets two points on an elliptic curve mod p and returns their sum.
// Assumes affine form (x, y) is spread (x1 *big.Int, y1 *big.Int)
//
// (ref: https://github.com/starkware-libs/cairo-lang/blob/master/src/starkware/crypto/starkware/crypto/signature/math_utils.py)
func (sc StarkCurve) Add(x1, y1, x2, y2 *big.Int) (x, y *big.Int) {
yDelta := new(big.Int).Sub(y1, y2)
xDelta := new(big.Int).Sub(x1, x2)
m := DivMod(yDelta, xDelta, sc.P)
xm := new(big.Int).Mul(m, m)
x = new(big.Int).Sub(xm, x1)
x = x.Sub(x, x2)
x = x.Mod(x, sc.P)
y = new(big.Int).Sub(x1, x)
y = y.Mul(m, y)
y = y.Sub(y, y1)
y = y.Mod(y, sc.P)
return x, y
}
// Doubles a point on an elliptic curve with the equation y^2 = x^3 + alpha*x + beta mod p.
// Assumes affine form (x, y) is spread (x1 *big.Int, y1 *big.Int)
//
// (ref: https://github.com/starkware-libs/cairo-lang/blob/master/src/starkware/crypto/starkware/crypto/signature/math_utils.py)
func (sc StarkCurve) Double(x1, y1 *big.Int) (x, y *big.Int) {
xin := new(big.Int).Mul(big.NewInt(3), x1)
xin = xin.Mul(xin, x1)
xin = xin.Add(xin, sc.Alpha)
yin := new(big.Int).Mul(y1, big.NewInt(2))
m := DivMod(xin, yin, sc.P)
xout := new(big.Int).Mul(m, m)
xmed := new(big.Int).Mul(big.NewInt(2), x1)
xout = xout.Sub(xout, xmed)
xout = xout.Mod(xout, sc.P)
yout := new(big.Int).Sub(x1, xout)
yout = yout.Mul(m, yout)
yout = yout.Sub(yout, y1)
yout = yout.Mod(yout, sc.P)
return xout, yout
}
func (sc StarkCurve) ScalarMult(x1, y1 *big.Int, k []byte) (x, y *big.Int) {
m := new(big.Int).SetBytes(k)
x, y = sc.EcMult(m, x1, y1)
return x, y
}
func (sc StarkCurve) ScalarBaseMult(k []byte) (x, y *big.Int) {
return sc.ScalarMult(sc.Gx, sc.Gy, k)
}
func (sc StarkCurve) IsOnCurve(x, y *big.Int) bool {
left := new(big.Int).Mul(y, y)
left = left.Mod(left, sc.P)
right := new(big.Int).Mul(x, x)
right = right.Mul(right, x)
right = right.Mod(right, sc.P)
ri := new(big.Int).Mul(big.NewInt(1), x)
right = right.Add(right, ri)
right = right.Add(right, sc.B)
right = right.Mod(right, sc.P)
if left.Cmp(right) == 0 {
return true
} else {
return false
}
}
// (ref: https://github.com/starkware-libs/cairo-lang/blob/master/src/starkware/crypto/starkware/crypto/signature/math_utils.py)
func (sc StarkCurve) InvModCurveSize(x *big.Int) *big.Int {
return DivMod(big.NewInt(1), x, sc.N)
}
// Given the x coordinate of a stark_key, returns a possible y coordinate such that together the
// point (x,y) is on the curve.
// Note: the real y coordinate is either y or -y.
//
// (ref: https://github.com/starkware-libs/cairo-lang/blob/master/src/starkware/crypto/starkware/crypto/signature/signature.py)
func (sc StarkCurve) GetYCoordinate(starkX *big.Int) *big.Int {
y := new(big.Int).Mul(starkX, starkX)
y = y.Mul(y, starkX)
yin := new(big.Int).Mul(sc.Alpha, starkX)
y = y.Add(y, yin)
y = y.Add(y, sc.B)
y = y.Mod(y, sc.P)
y = y.ModSqrt(y, sc.P)
return y
}
// Computes m * point + shift_point using the same steps like the AIR and throws an exception if
// and only if the AIR errors.
//
// (ref: https://github.com/starkware-libs/cairo-lang/blob/master/src/starkware/crypto/starkware/crypto/signature/signature.py)
func (sc StarkCurve) MimicEcMultAir(mout, x1, y1, x2, y2 *big.Int) (x *big.Int, y *big.Int, err error) {
m := new(big.Int).Set(mout)
if m.Cmp(big.NewInt(0)) != 1 || m.Cmp(sc.Max) != -1 {
return x, y, fmt.Errorf("too many bits %v", m.BitLen())
}
psx := x2
psy := y2
for i := 0; i < 251; i++ {
if psx == x1 {
return x, y, fmt.Errorf("xs are the same")
}
if m.Bit(0) == 1 {
psx, psy = sc.Add(psx, psy, x1, y1)
}
x1, y1 = sc.Double(x1, y1)
m = m.Rsh(m, 1)
}
if m.Cmp(big.NewInt(0)) != 0 {
return psx, psy, fmt.Errorf("m doesn't equal zero")
}
return psx, psy, nil
}
// Multiplies by m a point on the elliptic curve with equation y^2 = x^3 + alpha*x + beta mod p.
// Assumes affine form (x, y) is spread (x1 *big.Int, y1 *big.Int) and that 0 < m < order(point).
//
// (ref: https://github.com/starkware-libs/cairo-lang/blob/master/src/starkware/crypto/starkware/crypto/signature/math_utils.py)
func (sc StarkCurve) EcMult(m, x1, y1 *big.Int) (x, y *big.Int) {
var _ecMult func(m, x1, y1 *big.Int) (x, y *big.Int)
_add := func(x1, y1, x2, y2 *big.Int) (x, y *big.Int) {
yDelta := new(big.Int).Sub(y1, y2)
xDelta := new(big.Int).Sub(x1, x2)
m := DivMod(yDelta, xDelta, sc.P)
xm := new(big.Int).Mul(m, m)
x = new(big.Int).Sub(xm, x1)
x = x.Sub(x, x2)
x = x.Mod(x, sc.P)
y = new(big.Int).Sub(x1, x)
y = y.Mul(m, y)
y = y.Sub(y, y1)
y = y.Mod(y, sc.P)
return x, y
}
// alpha is our Y
_ecMult = func(m, x1, y1 *big.Int) (x, y *big.Int) {
if m.BitLen() == 1 {
return x1, y1
}
mk := new(big.Int).Mod(m, big.NewInt(2))
if mk.Cmp(big.NewInt(0)) == 0 {
h := new(big.Int).Div(m, big.NewInt(2))
c, d := sc.Double(x1, y1)
return _ecMult(h, c, d)
}
n := new(big.Int).Sub(m, big.NewInt(1))
e, f := _ecMult(n, x1, y1)
return _add(e, f, x1, y1)
}
x, y = _ecMult(m, x1, y1)
return x, y
}
// Finds a nonnegative integer 0 <= x < p such that (m * x) % p == n
//
// (ref: https://github.com/starkware-libs/cairo-lang/blob/master/src/starkware/crypto/starkware/crypto/signature/math_utils.py)
func DivMod(n, m, p *big.Int) *big.Int {
q := new(big.Int)
gx := new(big.Int)
gy := new(big.Int)
q.GCD(gx, gy, m, p)
r := new(big.Int).Mul(n, gx)
r = r.Mod(r, p)
return r
}