-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathternimal.rs
1215 lines (1010 loc) · 40.3 KB
/
ternimal.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Ternimal - Simulate a lifeform in the terminal
//
// Copyright (c) 2017 Philipp Emanuel Weidmann <pew@worldwidemann.com>
//
// Nemo vir est qui mundum non reddat meliorem.
//
// Released under the terms of the GNU General Public License, version 3
// (https://gnu.org/licenses/gpl.html)
use std::{env, process, thread};
use std::time::{Instant, Duration, SystemTime, UNIX_EPOCH};
use std::collections::{VecDeque, HashMap};
use std::fmt::{Display};
use std::ops::{Add, Sub, Mul};
use std::str::{FromStr};
use std::f64::{INFINITY, NEG_INFINITY};
use std::f64::consts::{PI};
const TWO_PI: f64 = 2.0 * PI;
/// Prints its formatted arguments to standard error, then exits the program.
macro_rules! exit {
($($arg:tt)*) => (
// Red foreground color
eprint!("\x1B[31m");
eprint!($($arg)*);
// Reset
eprint!("\x1B[m\n");
process::exit(1);
);
}
/// Wraps its formatted arguments in an `Err`.
macro_rules! err {
($($arg:tt)*) => (
Err(format!($($arg)*))
);
}
/// Evaluates to the minimum of its arguments.
///
/// Note that unlike with the macro from https://rustbyexample.com/macros/repeat.html,
/// the arguments need to implement only `PartialOrd`, not `Ord`.
macro_rules! min {
($a:expr) => ($a);
($a:expr, $($b:expr),+) => (
if $a < min!($($b),+) {
$a
} else {
min!($($b),+)
}
);
}
/// Evaluates to the maximum of its arguments.
macro_rules! max {
($a:expr) => ($a);
($a:expr, $($b:expr),+) => (
if $a > max!($($b),+) {
$a
} else {
max!($($b),+)
}
);
}
/// Program entry point
fn main() {
let args: Vec<String> = env::args().skip(1).collect();
let arguments = unwrap_or_exit(Arguments::parse(args));
// Sets a local variable to the value of the command line argument
// with the same name as the variable.
macro_rules! arg_var {
($name:ident, $default:expr) => (
let $name = unwrap_or_exit(arguments.value(stringify!($name), $default));
);
($name:ident, $default:expr, $min:expr, $max:expr) => (
arg_var!($name, $default);
if !($min <= $name && $name <= $max) {
exit!("Invalid value '{}' for argument '{}': Value must be between {} and {}.",
$name, stringify!($name), $min, $max);
}
);
}
// Seed value for random number generation
arg_var!(seed, SystemTime::now().duration_since(UNIX_EPOCH).unwrap().as_secs() as u32);
// Linear speed of the model along its path, in blocks/second
arg_var!(speed, 30.0, 0.0, 1000.0);
// Animation frames per second
arg_var!(fps, 30.0, 0.1, 600.0);
// Coloration gradient of the model, from its spine (`0`) to its outline (`1`)
arg_var!(gradient, Gradient(vec![
(0.4, Color::new(1.0, 1.0, 1.0)),
(0.6, Color::new(0.15, 0.15, 0.7)),
(1.0, Color::new(0.3, 0.1, 0.3)),
]));
// Use 24-bit RGB terminal colors (`true`) or the 256-color palette (`false`)
arg_var!(true_color, true);
// Dimensions of the arena, in blocks
arg_var!(width, 60, 1, 500);
arg_var!(height, 40, 1, 500);
if height % 2 != 0 {
exit!("Invalid height '{}': Height must be a multiple of 2.", height);
}
// Minimum and maximum length of the model, in blocks.
// The program will animate between the two for a "creeping" motion.
let length_range = unwrap_or_exit(arguments.value("length", Range::new(10.0, 20.0)));
if !(1.0 <= length_range.from && length_range.to <= 1000.0) {
exit!("Invalid length '{} to {}': Length must be between 1 and 1000.", length_range.from, length_range.to);
}
// Coefficients of the function determining the model's thickness,
// in blocks.
//
// The function has the form
//
// ```
// f(o, t) = a + b * sin(PI * (c * o + d * t + e)) + ...
// ```
//
// where `o` is the offset (between `0` and `1`) from the head
// of the model to its tail, and `t` is the time in seconds
// since the program was started.
let coefficients = unwrap_or_exit(arguments.values("thickness", vec![4.0, 1.0, 3.5, 0.0, 0.0]));
if coefficients.len() % 4 != 1 {
exit!("Invalid thickness specification: There must be 1, or 5, or 9, ... coefficients; {} were supplied.",
coefficients.len());
}
let thickness = |offset: f64, time: f64| {
assert!(0.0 <= offset && offset <= 1.0);
let mut thickness = coefficients[0];
for i in 0..((coefficients.len() - 1) / 4) {
thickness += coefficients[4 * i + 1] * (
PI * (
(coefficients[4 * i + 2] * offset) +
(coefficients[4 * i + 3] * time) +
coefficients[4 * i + 4]
)
).sin();
}
thickness
};
// Calculate upper bound for value of thickness function
let mut max_thickness = coefficients[0];
for i in 0..((coefficients.len() - 1) / 4) {
max_thickness += coefficients[4 * i + 1].abs();
}
if !(0.5 <= max_thickness && max_thickness <= 1000.0) {
exit!("Invalid thickness specification: Maximum thickness is {}; must be between 0.5 and 1000.", max_thickness);
}
let max_padding = 0.8 * ((min!(width, height) as f64) / 2.0);
// Minimum distance between the path and the boundary of the arena, in blocks
arg_var!(padding, min!(max_thickness, max_padding), 0.0, max_padding);
let max_radius = 0.8 * (((min!(width, height) as f64) / 2.0) - padding);
// Minimum and maximum radius of the arcs comprising the path, in blocks
let radius_range = unwrap_or_exit(arguments.value("radius",
Range::new(min!(1.2 * max_thickness, max_radius), max_radius)));
if !(0.5 <= radius_range.from && radius_range.to <= max_radius) {
exit!("Invalid radius '{} to {}': For the configured width, height, and padding, \
radius must be between 0.5 and {}.", radius_range.from, radius_range.to, max_radius);
}
// The dimensions of the arena must be such that it is always possible
// to generate a new arc that is tangential to the last arc in the path
// and whose radius lies within the permitted range (see `Path` for details).
// In the worst case, an arc of the maximum permitted radius is placed
// at the center of the arena, minimizing the available space for the next arc,
// which must be at least the minimum radius specified above.
let min_size = (2.0 * radius_range.to) + (4.0 * radius_range.from) + (2.0 * padding);
if (width as f64) < min_size && (height as f64) < min_size {
exit!("Insufficient arena size for path generation: For the configured radius and padding, \
either width or height must be at least {}.", min_size);
}
let mut path = Path {
random: Random(seed),
x_range: Range::new(padding, (width as f64) - padding),
y_range: Range::new(padding, (height as f64) - padding),
radius_range,
start_position: 0.0,
arcs: VecDeque::new(),
};
let mut last_position = 0.0;
let mut path_range = Range::new(0.0, length_range.from);
let mut expand_path = true;
let start_time = Instant::now();
// Rendering loop
loop {
let time = seconds(start_time.elapsed());
let position = speed * time;
if length_range.to > length_range.from {
// "Creeping" motion
let mut delta = position - last_position;
last_position = position;
while delta > 0.0 {
let length = path_range.to - path_range.from;
let max_delta = if expand_path {
length_range.to - length
} else {
length - length_range.from
};
let actual_delta = min!(delta, max_delta);
if expand_path {
path_range.to += actual_delta;
} else {
path_range.from += actual_delta;
}
if delta >= max_delta {
expand_path = !expand_path;
}
delta -= actual_delta;
}
} else {
// Linear motion
path_range.from = position;
path_range.to = path_range.from + length_range.from;
}
let model = Model::new(
path.generate(path_range.from, path_range.to),
|offset| thickness(offset, time),
max_thickness,
);
let canvas = rasterize(&model, &gradient, width, height);
let output = render(&canvas, true_color);
// Hide cursor while printing canvas to avoid flickering
print!("\x1B[?25l{}\x1B[?25h\n", output);
// Sleep to compensate for difference between rendering time and frame time
let sleep_time = (1.0 / fps) - (seconds(start_time.elapsed()) - time);
if sleep_time > 0.0 {
thread::sleep(Duration::new(sleep_time.trunc() as u64, (sleep_time.fract() * 1_000_000_000.0) as u32));
}
// Move cursor up to enable drawing of next frame over the current one
print!("\x1B[{}A", height / 2);
}
}
//----------------------------------------------------------
// Rendering
//----------------------------------------------------------
/// 2D model of a lifeform
struct Model<F: Fn(f64) -> f64> {
/// "Spine" of the model
arcs: Vec<Arc>,
/// Function determining the model's thickness
thickness: F,
max_thickness: f64,
length: f64,
x_range: Range<f64>,
y_range: Range<f64>,
}
impl <F: Fn(f64) -> f64> Model<F> {
/// Creates a new `Model` object.
fn new(arcs: Vec<Arc>, thickness: F, max_thickness: f64) -> Model<F> {
assert!(!arcs.is_empty());
assert!(max_thickness > 0.0);
let mut length = 0.0;
let mut min_x = INFINITY;
let mut max_x = NEG_INFINITY;
let mut min_y = INFINITY;
let mut max_y = NEG_INFINITY;
// Calculate length and bounding box of model
for arc in &arcs {
length += arc.length;
let (x_range, y_range) = arc.bounding_box();
min_x = min!(x_range.from, min_x);
max_x = max!(x_range.to, max_x);
min_y = min!(y_range.from, min_y);
max_y = max!(y_range.to, max_y);
}
assert!(length > 0.0);
Model {
arcs,
thickness,
max_thickness,
length,
x_range: Range::new(min_x - max_thickness, max_x + max_thickness),
y_range: Range::new(min_y - max_thickness, max_y + max_thickness),
}
}
/// Returns the color of the given point if it lies within the model,
/// or `None` if it lies outside of it.
fn color(&self, point: &Point, gradient: &Gradient) -> Option<Color> {
// Return early if `point` lies outside the bounding box.
// This dramatically improves performance when the model
// is small compared to the arena.
if !(self.x_range.contains(point.x) && self.y_range.contains(point.y)) {
return None;
}
let mut distance = INFINITY;
let mut length = 0.0;
// Determine minimum *relative* distance from point to model
// (distance as a fraction of the corresponding local thickness)
for (i, arc) in self.arcs.iter().enumerate() {
let first_arc = i == 0;
let last_arc = i == self.arcs.len() - 1;
let (arc_distance, arc_offset) = match arc.location(point) {
ArcLocation::Inside(offset) => (point.distance(&arc.point(offset)), offset),
// "Round off" model shape by capping ends with circles
ArcLocation::Before if first_arc => (point.distance(&arc.point(0.0)), 0.0),
ArcLocation::After if last_arc => (point.distance(&arc.point(1.0)), 1.0),
_ => (-1.0, -1.0),
};
if 0.0 <= arc_distance && arc_distance <= self.max_thickness {
let offset = (length + (arc.length * arc_offset)) / self.length;
// The loop iterates over arcs from the tail of the model to its head,
// so the offset must be inverted before being passed to the thickness function
let thickness = (self.thickness)(1.0 - offset);
if thickness > 0.0 {
distance = min!(arc_distance / thickness, distance);
}
}
length += arc.length;
}
if distance > 1.0 {
None
} else {
Some(gradient.color(distance))
}
}
}
/// Grid of colored blocks representing the arena
type Canvas = Vec<Vec<Option<Color>>>;
/// Determines the color of each pixel-like block in the arena for the given model.
fn rasterize<F: Fn(f64) -> f64>(model: &Model<F>, gradient: &Gradient, width: usize, height: usize) -> Canvas {
let mut grid = vec![];
// Compute colors for grid points
for i in 0..(height + 1) {
let mut row = vec![];
for j in 0..(width + 1) {
let color = model.color(&Point::new(j as f64, i as f64), gradient);
row.push(color);
}
grid.push(row);
}
let mut canvas = vec![];
// Color blocks by averaging the colors of their corners
for i in 0..height {
let mut row = vec![];
for j in 0..width {
let mut corners = vec![];
for ii in 0..2 {
for jj in 0..2 {
match grid[i + ii][j + jj] {
Some(color) => corners.push(color),
None => {},
}
}
}
row.push(if corners.len() >= 3 {
Some(Color::average(&corners))
} else {
None
});
}
canvas.push(row);
}
canvas
}
/// Returns a string that, when printed to the terminal, renders the given canvas.
fn render(canvas: &Canvas, true_color: bool) -> String {
assert!(!canvas.is_empty());
// The canvas must have an even number of rows because
// two rows are represented by each line of output
assert!(canvas.len() % 2 == 0);
let mut output = String::new();
let mut reset_required = true;
let row_length = canvas[0].len();
for i in 0..(canvas.len() / 2) {
assert!(canvas[2 * i].len() == row_length);
assert!(canvas[2 * i + 1].len() == row_length);
for j in 0..row_length {
let block = match (canvas[2 * i][j], canvas[2 * i + 1][j]) {
(Some(top), Some(bottom)) => {
// Unicode UPPER HALF BLOCK with foreground (top) and background (bottom) color
format!("\x1B[38;{};48;{}m\u{2580}", top.sgr(true_color), bottom.sgr(true_color))
},
(Some(top), None) => {
// Unicode UPPER HALF BLOCK with foreground (top) color
format!("\x1B[{}38;{}m\u{2580}", if reset_required { "0;" } else { "" }, top.sgr(true_color))
},
(None, Some(bottom)) => {
// Unicode LOWER HALF BLOCK with foreground (bottom) color
format!("\x1B[{}38;{}m\u{2584}", if reset_required { "0;" } else { "" }, bottom.sgr(true_color))
},
(None, None) => {
format!("{} ", if reset_required { "\x1B[m" } else { "" })
},
};
output.push_str(&block);
reset_required = canvas[2 * i][j].is_some() && canvas[2 * i + 1][j].is_some();
}
let last_line = i == (canvas.len() / 2) - 1;
// Always reset on the last line to restore foreground color
if reset_required || last_line {
output.push_str("\x1B[m");
}
if !last_line {
output.push_str("\n");
}
reset_required = false;
}
output
}
//----------------------------------------------------------
// Path generation
//----------------------------------------------------------
/// Extensible, differentiable curve in `R^2`
struct Path {
random: Random,
/// Permitted range for x coordinates of points on path
x_range: Range<f64>,
/// Permitted range for y coordinates of points on path
y_range: Range<f64>,
/// Permitted range for radii of arcs comprising the path
radius_range: Range<f64>,
/// Linear position associated with first arc in the path
start_position: f64,
arcs: VecDeque<Arc>,
}
impl Path {
/// Extends the path with randomly generated arcs as needed to cover
/// the range of positions between `start_position` and `end_position`,
/// discards existing arcs not overlapping that range, and returns
/// the segment of the path corresponding to the range.
fn generate(&mut self, start_position: f64, end_position: f64) -> Vec<Arc> {
assert!(start_position < end_position);
// Always leave at least one arc in the path
// for newly generated arcs to connect to
while self.arcs.len() > 1 && (self.start_position + self.arcs[0].length) < start_position {
let first_arc = self.arcs.pop_front().unwrap();
self.start_position += first_arc.length;
}
while self.end_position() < end_position {
let (center, radius, start, clockwise) = if self.arcs.is_empty() {
// Initial arc
let min_radius = self.radius_range.from;
// Leave room around center for a circle of radius at least `min_radius`
let center = Point::new(
self.random.real_range(self.x_range.from + min_radius, self.x_range.to - min_radius),
self.random.real_range(self.y_range.from + min_radius, self.y_range.to - min_radius),
);
// Largest radius that fits inside the rectangle
let max_radius = min!(
self.radius_range.to,
(center.x - self.x_range.from).abs(),
(center.x - self.x_range.to).abs(),
(center.y - self.y_range.from).abs(),
(center.y - self.y_range.to).abs()
);
(
center,
self.random.real_range(min_radius, max_radius),
self.random.real_range_except(0.0, TWO_PI, &[TWO_PI]),
self.random.flip(),
)
} else {
// The goal is to construct an arc that:
// 1. Starts where the last arc ends
// 2. Continues from the last arc in such a way that
// the resulting curve is differentiable
// 3. Has orientation opposite to the last arc
// 4. Lies completely inside the rectangle
let last_arc = &self.arcs[self.arcs.len() - 1];
let (endpoint, direction) = last_arc.endpoint_and_direction();
let max_radius = self.max_radius(endpoint, direction);
let radius = self.random.real_range(self.radius_range.from, max_radius);
(
endpoint + (direction * radius),
radius,
if last_arc.end < PI {
last_arc.end + PI
} else {
last_arc.end - PI
},
!last_arc.clockwise,
)
};
// Brute force an admissible endpoint angle for the arc, that is,
// an angle that allows for the construction of a tangent arc with
// radius at least the minimum radius specified for the path
let arc = loop {
let end = self.random.real_range_except(0.0, TWO_PI, &[TWO_PI, start]);
let arc = Arc::new(center, radius, start, end, clockwise);
let (endpoint, direction) = arc.endpoint_and_direction();
if self.max_radius(endpoint, direction) >= self.radius_range.from {
break arc;
}
};
self.arcs.push_back(arc);
}
let mut arcs = vec![];
let mut arc_start_position = self.start_position;
for arc in &self.arcs {
let arc_end_position = arc_start_position + arc.length;
if start_position < arc_end_position && end_position > arc_start_position {
// Arc is at least partially contained in range
let start = if start_position > arc_start_position {
let position = (start_position - arc_start_position) / arc.length;
((arc.start + (arc.end_difference * position)) + TWO_PI) % TWO_PI
} else {
arc.start
};
let end = if end_position < arc_end_position {
let position = (end_position - arc_start_position) / arc.length;
((arc.start + (arc.end_difference * position)) + TWO_PI) % TWO_PI
} else {
arc.end
};
arcs.push(Arc::new(arc.center, arc.radius, start, end, arc.clockwise));
}
arc_start_position = arc_end_position;
}
arcs
}
/// Returns the last position in the path.
fn end_position(&self) -> f64 {
self.start_position + self.arcs.iter().map(|arc| arc.length).sum::<f64>()
}
/// Returns the maximum radius allowed for an arc that is tangential to
/// the arc ending at `endpoint` with the normalized center-endpoint
/// vector `direction`.
fn max_radius(&self, endpoint: Point, direction: Point) -> f64 {
// For an arc to be tangential to the given arc, the centers
// of the two arcs must be collinear with the tangent point
// (i.e. `endpoint`). Since the new arc has orientation
// opposite to the given arc, its center lies on the extension of
// the line from the given arc's center to its endpoint.
//
// The radius of the new arc must be chosen such that the arc lies
// inside the rectangle. The new arc is bounded to the right
// by the vertical line at
//
// ```
// endpoint.x + (radius * direction.x) + radius
// ```
//
// Setting this to be at most `x_range.to` and solving for `radius` gives
//
// ```
// radius <= (x_range.to - endpoint.x) / (direction.x + 1)
// ```
//
// and applying this argument mutatis mutandis to the other directions
// results in the expressions below.
min!(
self.radius_range.to,
// Left
(self.x_range.from - endpoint.x) / (direction.x - 1.0),
// Right
(self.x_range.to - endpoint.x) / (direction.x + 1.0),
// Top
(self.y_range.from - endpoint.y) / (direction.y - 1.0),
// Bottom
(self.y_range.to - endpoint.y) / (direction.y + 1.0)
)
}
}
//----------------------------------------------------------
// Geometric primitives
//----------------------------------------------------------
/// Point/vector in `R^2`
#[derive(Copy, Clone)]
struct Point {
x: f64,
y: f64,
}
impl Point {
/// Creates a new `Point` object.
fn new(x: f64, y: f64) -> Point {
Point { x, y }
}
/// Returns the Euclidean distance between this point and the given point.
fn distance(&self, point: &Point) -> f64 {
((self.x - point.x).powi(2) + (self.y - point.y).powi(2)).sqrt()
}
}
/// Vector addition
impl Add for Point {
type Output = Point;
fn add(self, point: Point) -> Point {
Point::new(self.x + point.x, self.y + point.y)
}
}
/// Vector subtraction
impl Sub for Point {
type Output = Point;
fn sub(self, point: Point) -> Point {
Point::new(self.x - point.x, self.y - point.y)
}
}
/// Scalar multiplication
impl Mul<f64> for Point {
type Output = Point;
fn mul(self, scalar: f64) -> Point {
Point::new(self.x * scalar, self.y * scalar)
}
}
/// Circular arc in `R^2`
struct Arc {
center: Point,
radius: f64,
/// Start angle of the arc (between `0` and `TWO_PI`)
start: f64,
/// End angle of the arc (between `0` and `TWO_PI`)
end: f64,
clockwise: bool,
length: f64,
end_difference: f64,
}
impl Arc {
/// Creates a new `Arc` object.
fn new(center: Point, radius: f64, start: f64, end: f64, clockwise: bool) -> Arc {
// Note that these assertions guarantee that the arc has positive length
assert!(radius > 0.0);
assert!(0.0 <= start && start < TWO_PI);
assert!(0.0 <= end && end < TWO_PI);
assert!(start != end);
let mut arc = Arc {
center,
radius,
start,
end,
clockwise,
length: 0.0,
end_difference: 0.0,
};
arc.end_difference = arc.difference(arc.end);
arc.length = arc.end_difference.abs() * arc.radius;
arc
}
/// Returns the point at the given normalized (between `0` and `1`)
/// linear position on the arc.
fn point(&self, position: f64) -> Point {
assert!(0.0 <= position && position <= 1.0);
let angle = self.start + (self.end_difference * position);
Point::new(
self.center.x + (angle.cos() * self.radius),
// Note that the canvas' y axis is flipped compared to
// the standard Cartesian coordinate system
self.center.y - (angle.sin() * self.radius),
)
}
/// Returns the signed angular difference between `start` and the given angle,
/// taking `clockwise` into account.
fn difference(&self, angle: f64) -> f64 {
let difference = angle - self.start;
if difference > 0.0 && self.clockwise {
difference - TWO_PI
} else if difference < 0.0 && !self.clockwise {
difference + TWO_PI
} else {
difference
}
}
/// Returns the endpoint of the arc, as well as the unit vector
/// pointing from the center to the endpoint.
fn endpoint_and_direction(&self) -> (Point, Point) {
let endpoint = self.point(1.0);
let direction = endpoint - self.center;
let direction = direction * (1.0 / direction.distance(&Point::new(0.0, 0.0)));
(endpoint, direction)
}
/// Returns the horizontal and vertical extent of the arc.
fn bounding_box(&self) -> (Range<f64>, Range<f64>) {
let start_point = self.point(0.0);
let end_point = self.point(1.0);
let min_x = if self.contains_angle(PI) {
self.center.x - self.radius
} else {
min!(start_point.x, end_point.x)
};
let max_x = if self.contains_angle(0.0) {
self.center.x + self.radius
} else {
max!(start_point.x, end_point.x)
};
let min_y = if self.contains_angle(PI / 2.0) {
self.center.y - self.radius
} else {
min!(start_point.y, end_point.y)
};
let max_y = if self.contains_angle(1.5 * PI) {
self.center.y + self.radius
} else {
max!(start_point.y, end_point.y)
};
(Range::new(min_x, max_x), Range::new(min_y, max_y))
}
/// Returns `true` if the arc covers the given angle and `false` otherwise.
fn contains_angle(&self, angle: f64) -> bool {
self.difference(angle).abs() <= self.end_difference.abs()
}
/// Returns the location of the given point relative to the arc.
fn location(&self, point: &Point) -> ArcLocation {
let direction = *point - self.center;
let angle = ((-direction.y).atan2(direction.x) + TWO_PI) % TWO_PI;
let angle_difference = self.difference(angle).abs();
let end_difference = self.end_difference.abs();
if angle_difference <= end_difference {
ArcLocation::Inside(angle_difference / end_difference)
} else if (angle_difference - end_difference) > (TWO_PI - end_difference) / 2.0 {
ArcLocation::Before
} else {
ArcLocation::After
}
}
}
/// Location of a `Point` relative to an `Arc`
enum ArcLocation {
/// The point lies inside the circular sector traced out by the arc
/// (extended to an infinite radius), at the given position (between `0` and `1`)
Inside(f64),
/// The point lies inside the inverse of the circular sector traced out by the arc,
/// within the half that touches the start of the arc
Before,
/// The point lies inside the inverse of the circular sector traced out by the arc,
/// within the half that touches the end of the arc
After,
}
//----------------------------------------------------------
// Colors
//----------------------------------------------------------
/// Color in RGB color space
#[derive(Copy, Clone)]
struct Color {
/// Red component of the color (between `0` and `1`)
red: f64,
/// Green component of the color (between `0` and `1`)
green: f64,
/// Blue component of the color (between `0` and `1`)
blue: f64,
}
impl Color {
/// Creates a new `Color` object.
fn new(red: f64, green: f64, blue: f64) -> Color {
assert!(0.0 <= red && red <= 1.0);
assert!(0.0 <= green && green <= 1.0);
assert!(0.0 <= blue && blue <= 1.0);
Color { red, green, blue }
}
/// Returns the component-wise arithmetic mean of the given colors.
fn average(colors: &[Color]) -> Color {
assert!(!colors.is_empty());
let mut red = 0.0;
let mut green = 0.0;
let mut blue = 0.0;
for color in colors {
red += color.red;
green += color.green;
blue += color.blue;
}
let count = colors.len() as f64;
Color::new(red / count, green / count, blue / count)
}
/// Returns the component-wise weighted linear interpolation between
/// this color (`balance = 0`) and the given color (`balance = 1`).
fn interpolate(&self, color: &Color, balance: f64) -> Color {
assert!(0.0 <= balance && balance <= 1.0);
let inverse_balance = 1.0 - balance;
Color::new(
(self.red * inverse_balance) + (color.red * balance),
(self.green * inverse_balance) + (color.green * balance),
(self.blue * inverse_balance) + (color.blue * balance),
)
}
/// Returns an ANSI Select Graphic Rendition representation of the color.
fn sgr(&self, true_color: bool) -> String {
if true_color {
let r = (self.red * 255.0).round() as u8;
let g = (self.green * 255.0).round() as u8;
let b = (self.blue * 255.0).round() as u8;
format!("2;{};{};{}", r, g, b)
} else {
let r = (self.red * 5.0).round() as u8;
let g = (self.green * 5.0).round() as u8;
let b = (self.blue * 5.0).round() as u8;
// Formula from https://en.wikipedia.org/wiki/ANSI_escape_code
format!("5;{}", 16 + (36 * r) + (6 * g) + b)
}
}
}
/// Multi-step linear color gradient
///
/// Positions must be between `0` (start) and `1` (end).
/// Steps must be ordered by position (ascending).
struct Gradient(Vec<(f64, Color)>);
impl Gradient {
/// Returns the interpolated color at the given position in the gradient.
fn color(&self, position: f64) -> Color {
assert!(0.0 <= position && position <= 1.0);
let steps = &self.0;
assert!(!steps.is_empty());
let length = steps.len();
if position <= steps[0].0 {
steps[0].1
} else if position >= steps[length - 1].0 {
steps[length - 1].1
} else {
for i in 0..(length - 1) {
let start = steps[i].0;
let end = steps[i + 1].0;
assert!(start <= end);
if start <= position && position < end {
// Note that `start < end` per the above condition,
// so division by zero cannot occur here
let balance = (position - start) / (end - start);
return steps[i].1.interpolate(&steps[i + 1].1, balance);
}
}
unreachable!();
}
}
}
//----------------------------------------------------------
// Command line parsing
//----------------------------------------------------------
/// Basic command line argument parser
struct Arguments(HashMap<String, String>);
impl Arguments {
/// Parses an argument vector whose elements are of the form `name=value`.
fn parse(args: Vec<String>) -> Result<Arguments, String> {
let mut arguments = HashMap::new();
for arg in args {
let parts: Vec<&str> = arg.splitn(2, "=").collect();
if parts.len() < 2 {
return err!("Invalid argument '{}': Arguments must be of the form 'name=value'.", arg);
}
let name = parts[0].trim();
if name.is_empty() {
return err!("Invalid argument '{}': Name must not be empty.", arg);
}
if arguments.contains_key(name) {
return err!("Duplicate argument '{}'.", name);
}
let value = parts[1].trim_matches(|c: char| c.is_whitespace() || c == '"' || c == '\'');
arguments.insert(name.to_owned(), value.to_owned());
}
Ok(Arguments(arguments))
}
/// Returns the value of the argument `name`, or `default` if it does not exist.
fn value<T>(&self, name: &str, default: T) -> Result<T, String> where