-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathcorona_stochastic.py
111 lines (74 loc) · 2.25 KB
/
corona_stochastic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 29 18:46:49 2020
@author: paul
"""
# A stochastic SIR model!
from random import uniform as u
import math
import numpy as np
import matplotlib.pyplot as plt
from pylab import * # for savefig()
N=1002252 # Initial population
I=1 # Initially 3 infected people
R=0 # 0 Recovered
S=N-I-R # Susceptible (N=S+I+R)
beta=0.6671291 # Rate of infection
gamma=0.3328710 # Rate of recovery
T=70 # Time-play days?
t=0 # current time
data=[]
x=[S,I,R] # Initial params
rates=(beta,gamma)
i=0
while (i<10): # coz you might want to run it a thousand million times!
S,I,R=x
b,g=rates # taking the same conditions, but these are for here!
ctr=0
# Gillespie algo...
while t<T:
if I==0:
break
dS=b*S*I/N
dR=g*I
W=dS+dR # As a scale factor...
step=u(0,1)
dt=-math.log(step)/W
t+=dt
if u(0,1) <dS/W:
S=S-1
I=I+1
else:
I=I-1
R=R+1
# Okay, so we are gonna average time! Makes mathematical sense...
if i==0: # 1st run
data.append([t,S,I,R,1]) # 1 means that one value is added ... needed below!
else:
if (ctr>=len(data)): # So some data is lost here! But that's averaged out!
break # break out of inner loop!
else:
data[ctr][0]+=t
data[ctr][1]+=S
data[ctr][2]+=I
data[ctr][3]+=R
data[ctr][4]+=1
ctr+=1
if i==0:
data=np.array(data)
t=0
i+=1
for i in range(len(data)):
n=data[i][4] # Number of times a value has been added!
data[i]/=n
# Plot Stochastic sim...
plt.plot(data[:,0],data[:,1])
plt.plot(data[:,0],data[:,2])
plt.plot(data[:,0],data[:,3])
plt.xlabel('Time')
plt.ylabel('Population')
plt.legend(['S','I','R'],shadow=True)
plt.title('COVID-Sim')
plt.draw()
savefig("/home/paul/Documents/COVID/"+"sim_b"+str(beta)+"_g"+str(gamma)+".png",dpi=400)