-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpayout_multipliers.py
53 lines (35 loc) · 1.7 KB
/
payout_multipliers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from fractions import Fraction
from pulp import *
# Linear program to calculate the payout coefficients based on currently set reel states
# coefficients calculated against an arbitrary target payout %
rtp_target = 0.9
def machine_coefficients(symbols, absolute_probability):
lp = LpProblem("Machine_coefficients", LpMaximize)
decision_vars = []
# define variables
for symbol in symbols:
decision_vars.append(LpVariable(symbol, 0))
# define objective function
objective_function = lpSum([decision_vars[i] for i in range(len(symbols))])
lp += objective_function
# define constraints
lp += lpSum([decision_vars[i] * absolute_probability[symbols[i]] for i in range(len(symbols))]) <= rtp_target
# payout multiplier must be at least 0.9 for each symbol
for i in range(len(symbols)):
lp += decision_vars[i] >= 0.9
# payout multiplier must be at least 1.3x the previous symbol's payout multiplier
for i in range(1, len(symbols)):
lp += decision_vars[i] >= decision_vars[i - 1] * 1.3
lp.solve()
print("Payout Multipliers:")
print_results(lp)
print("Calculated RTP:")
print(lpSum([decision_vars[i] * absolute_probability[symbols[i]] for i in range(len(symbols))]).value())
return {symbols[i]: decision_vars[i].varValue for i in range(len(symbols))}
# print results of payout multiplier optimisation
def print_results(problem):
sense = "min" if problem.sense == 1 else "max"
print(f"status: {LpStatus[problem.status]}")
for v in problem.variables():
print(f"{v.name} = {str(Fraction(v.varValue).limit_denominator())}")
print(f"{sense}(z) = {str(Fraction(value(problem.objective)).limit_denominator())}")