Skip to content

Latest commit

 

History

History
72 lines (62 loc) · 17.2 KB

File metadata and controls

72 lines (62 loc) · 17.2 KB

Overview of image classification STM32 model zoo

The STM32 model zoo includes several models for image classification use cases pre-trained on custom and public datasets. Under each model directory, you can find the following model categories:

  • Public_pretrainedmodel_public_dataset contains public image classification models trained on public datasets.
  • ST_pretrainedmodel_custom_dataset contains different image classification models trained on ST custom datasets using our training scripts.
  • ST_pretrainedmodel_public_dataset contains different image classification models trained on various public datasets following the training section in STM32 model zoo.

Image classification models

The table below summarizes the performance of the models, as well as their memory footprints generated using STM32Cube.AI for deployment purposes.

By default, the results are provided for quantized Int8 models. When nothing is precised in the model name, training is done using transfer learning technique from a pre-trained model. Else, "tfs" stands for "training from scratch".

Models Implementation Dataset Input Resolution Top 1 Accuracy (%) MACCs (M) Activation RAM (KiB) Weights Flash (KiB) STM32Cube.AI version Source
MobileNet v1 0.25 TensorFlow Flowers 224x224x3 83.24% 41 202.14 214.69 7.3.0 link
MobileNet v1 0.5 TensorFlow Flowers 224x224x3 89.51% 149.3 404.28 812.61 7.3.0 link
MobileNet v1 0.25 tfs TensorFlow Flowers 96x96x3 82.15% 7.550 38.64 214.69 7.3.0 link
MobileNet v1 0.25 tfs TensorFlow Flowers 96x96x1 72.75% 7.550 38.64 214.69 7.3.0 link
MobileNet v2 0.35 TensorFlow Flowers 128x128x3 86.38% 19 224.5 406.86 7.3.0 link
MobileNet v2 0.35 TensorFlow Flowers 224x224x3 89.37% 58.4 686.5 406.86 7.3.0 link
FdMobileNet 0.25 tfs TensorFlow Flowers 224x224x3 85.97% 12.1 152.05 128.32 7.3.0 link
FdMobileNet 0.25 tfs TensorFlow Flowers 128x128x3 84.2% 3.953 51.18 128.32 7.3.0 link
ST FdMobileNet v1 tfs TensorFlow Flowers 224x224x3 86.92% 24.74 206.87 144.93 7.3.0 Please Contact Edge.ai@st.com
ST FdMobileNet v1 tfs TensorFlow Flowers 128x128x3 84.74% 8.08 70.75 144.93 7.3.0 Please Contact Edge.ai@st.com
ST EfficientNet LC v1 tfs TensorFlow Flowers 224x224x3 90.46% 62.49 308.8 505.41 7.3.0 Please Contact Edge.ai@st.com
ST EfficientNet LC v1 tfs TensorFlow Flowers 128x128x3 87.19% 20.46 104.61 505.41 7.3.0 Please Contact Edge.ai@st.com
SqueezeNet v1.0 tfs TensorFlow Flowers 128x128x3 81.34% 175.00 450.0 535.69 7.3.0 link
SqueezeNet v1.1 tfs TensorFlow Flowers 128x128x3 78.61% 82.09 240.25 716.70 7.3.0 link
SqueezeNet v1.1 tfs TensorFlow Flowers 224x224x3 81.06% 266,33 756.25 733.83 7.3.0 link
MobileNet v1 0.25 TensorFlow Plant-village 224x224x3 86.22% 41.1 202.14 223.32 7.3.0 link
MobileNet v1 0.5 TensorFlow Plant-village 224x224x3 92.01% 149.3 404.28 829.75 7.3.0 link
MobileNet v2 0.35 TensorFlow Plant-village 128x128x3 91.35% 19.1 224.5 449.5 7.3.0 link
MobileNet v2 0.35 TensorFlow Plant-village 224x224x3 91.62% 58.5 686.5 449.5 7.3.0 link
FdMobileNet 0.25 tfs TensorFlow Plant-village 224x224x3 99.59% 12.1 152.05 136.95 7.3.0 link
FdMobileNet 0.25 tfs TensorFlow Plant-village 128x128x3 98.35% 3.96 51.18 136.95 7.3.0 link
ST FdMobileNet v1 tfs TensorFlow Plant-village 224x224x3 99.79% 24.75 206.87 153.56 7.3.0 Please Contact Edge.ai@st.com
ST FdMobileNet v1 tfs TensorFlow Plant-village 128x128x3 96.08% 8.09 70.75 153.56 7.3.0 Please Contact Edge.ai@st.com
ST EfficientNet LC v1 tfs TensorFlow Plant-village 224x224x3 99.76% 62.5 308.8 524.67 7.3.0 Please Contact Edge.ai@st.com
ST EfficientNet LC v1 tfs TensorFlow Plant-village 128x128x3 99.4% 20.5 104.61 524.67 7.3.0 Please Contact Edge.ai@st.com
SqueezeNet v1.0 tfs TensorFlow Plant-village 128x128x3 98.29% 175.63 450.0 552.88 7.3.0 link
SqueezeNet v1.1 tfs TensorFlow Plant-village 128x128x3 99.04% 82.09 240.25 716.70 7.3.0 link
SqueezeNet v1.1 tfs TensorFlow Plant-village 224x224x3 99.32% 269,28 686.5 449.5 7.3.0 link
MobileNet v1 0.25 TensorFlow Food-101 224x224x3 38.02% 41.1 202.14 239.07 7.3.0 link
MobileNet v1 0.5 TensorFlow Food-101 224x224x3 48.5% 149.3 404.28 860.99 7.3.0 link
MobileNet v2 0.35 TensorFlow Food-101 128x128x3 41.58% 19.2 224.5 527.24 7.3.0 link
MobileNet v2 0.35 TensorFlow Food-101 224x224x3 48.67% 58.6 686.5 527.24 7.3.0 link
FdMobileNet 0.25 tfs TensorFlow Food-101 224x224x3 56.36% 12.125 152.05 152.69 7.3.0 link
FdMobileNet 0.25 tfs TensorFlow Food-101 128x128x3 44.76% 3.979 51.18 152.69 7.3.0 link
ST FdMobileNet v1 tfs TensorFlow Food-101 224x224x3 63.6% 24.77 206.87 169.3 7.3.0 Please Contact Edge.ai@st.com
ST FdMobileNet v1 tfs TensorFlow Food-101 128x128x3 52.48% 8.108 70.75 169.3 7.3.0 Please Contact Edge.ai@st.com
ST EfficientNet LC v1 tfs TensorFlow Food-101 224x224x3 72.53% 62.55 308.8 559.79 7.3.0 Please Contact Edge.ai@st.com
ST EfficientNet LC v1 tfs TensorFlow Food-101 128x128x3 61.3% 20.52 104.61 559.79 7.3.0 Please Contact Edge.ai@st.com
SqueezeNet v1.0 tfs TensorFlow Food-101 128x128x3 57.8% 176.78 450 584.24 7.3.0 link
SqueezeNet v1.1 tfs TensorFlow Food-101 128x128x3 52.18% 83.65 240.25 765.082 7.3.0 link
SqueezeNet v1.1 tfs TensorFlow Food-101 224x224x3 56.43% 274.65 756.25 765.082 7.3.0 link
MobileNet v2 0.35 TensorFlow person 128x128x3 91.05% 19,09 245.5 401.84 7.3.0 link
MobileNet v2 0.35 tfs TensorFlow person 128x128x3 86.22% 19,09 245.5 401.84 7.3.0 link
MobileNet v1 0.25 TensorFlow visual wake word 96x96x3 85.2% 7,494 40.19 213.93 7.3.0 link
ResNet v1 8 tfs TensorFlow cifar10 32x32x3 84.95% 12.54 55.28 76.89 7.3.0 link
ST ResNet 8 Hybrid v1 tfs * TensorFlow cifar10 32x32x3 85.89% 11.45 72 66.28 7.3.0 Please Contact Edge.ai@st.com
ST ResNet 8 Hybrid v2 tfs * TensorFlow cifar10 32x32x3 85.24% 10.10 72 85.8 7.3.0 Please Contact Edge.ai@st.com
ST ResNet 8 Hybrid v3 tfs * TensorFlow cifar10 32x32x3 84.37% 8.13 72 66.28 7.3.0 Please Contact Edge.ai@st.com
ResNet v1 32 tfs TensorFlow cifar100 32x32x3 66.3 % 69.28 55.28 464.37 7.3.0 link
ST MNIST Byclass v1 tfs TensorFlow EMNIST-Byclass 28x28x1 93.38% 1.081 14.13 10.08 7.3.0 link

* Quantization on <= 8 bits model results