forked from hustvl/4DGaussians
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprune.py
executable file
·56 lines (53 loc) · 1.88 KB
/
prune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
import os
import torch
from random import randint
from gaussian_renderer import render, count_render
import sys
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import uuid
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from utils.graphics_utils import getWorld2View2
from icecream import ic
import random
import copy
import gc
import numpy as np
from collections import defaultdict
def prune_list(gaussians, scene, pipe, background):
viewpoint_stack = scene.video_camera.copy()
gaussian_list, imp_list = None, None
viewpoint_cam = viewpoint_stack.pop()
render_pkg = count_render(viewpoint_cam, gaussians, pipe, background)
gaussian_list, imp_list = (
render_pkg["gaussians_count"],
render_pkg["important_score"],
)
# ic(dataset.model_path)
for iteration in range(len(viewpoint_stack)):
# Pick a random Camera
# prunning
viewpoint_cam = viewpoint_stack.pop()
render_pkg = count_render(viewpoint_cam, gaussians, pipe, background)
# image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
gaussians_count, important_score = (
render_pkg["gaussians_count"].detach(),
render_pkg["important_score"].detach(),
)
gaussian_list += gaussians_count
imp_list += important_score
gc.collect()
return gaussian_list, imp_list