forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
264 lines (228 loc) · 9.29 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import random
from functools import partial
import numpy as np
import paddle
import paddle.distributed as dist
from paddle.io import DataLoader, DistributedBatchSampler, BatchSampler
from paddlenlp.data import Pad
def print_args(args):
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).items()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def set_seed(seed):
# Use the same data seed(for data shuffle) for all procs to guarantee data
# consistency after sharding.
random.seed(seed)
np.random.seed(seed)
# Maybe different op seeds(for dropout) for different procs is better.
paddle.seed(seed + dist.get_rank())
def preprocess_examples(examples, mode='train'):
"""
For training set and dev set, treat each utterance of the first speaker as
the response, and concatenate the goal, knowledge and the dialog’s previous
utterances as the history. In this way, multiple history-response pairs
are constructed.
"""
if mode == 'test':
return examples
new_examples = []
for example in examples:
conversation = example['conversation']
for i in range(0, len(conversation), 2):
new_examples.append({
'goal': example['goal'],
'knowledge': example['knowledge'],
'history': conversation[:i],
'response': conversation[i]
})
return new_examples
def convert_example(example,
tokenizer,
max_seq_len=512,
max_response_len=128,
max_knowledge_len=256,
mode='train'):
"""Convert all examples into necessary features."""
goal = example['goal']
knowledge = example['knowledge']
goal_knowledge = ' '.join([' '.join(lst) for lst in goal + knowledge])
if mode != 'test':
tokenized_example = tokenizer.dialogue_encode(
example['history'],
response=example['response'],
knowledge=goal_knowledge,
task_type='knowledge',
max_seq_len=max_seq_len,
max_response_len=max_response_len,
max_knowledge_len=max_knowledge_len,
return_length=True)
response_start = tokenized_example['input_ids'].index(
tokenizer.cls_token_id, 1)
response_end = tokenized_example['seq_len']
# Use to gather the logits corresponding to the labels during training
tokenized_example['masked_positions'] = list(
range(response_start, response_end - 1))
tokenized_example['labels'] = tokenized_example['input_ids'][
response_start + 1:response_end]
return tokenized_example
else:
tokenized_example = tokenizer.dialogue_encode(
example['history'],
knowledge=goal_knowledge,
task_type='knowledge',
max_seq_len=max_seq_len,
max_knowledge_len=max_knowledge_len,
add_start_token_as_response=True,
return_length=True)
if 'response' in example:
tokenized_example['response'] = example['response']
return tokenized_example
def batchify_fn(batch_examples, pad_val, mode):
def pad_mask(batch_attention_mask):
batch_size = len(batch_attention_mask)
max_len = max(map(len, batch_attention_mask))
attention_mask = np.ones(
(batch_size, max_len, max_len), dtype='float32') * -1e9
for i, mask_data in enumerate(attention_mask):
seq_len = len(batch_attention_mask[i])
mask_data[-seq_len:, -seq_len:] = np.array(
batch_attention_mask[i], dtype='float32')
# In order to ensure the correct broadcasting mechanism, expand one
# dimension to the second dimension (n_head of Transformer).
attention_mask = np.expand_dims(attention_mask, axis=1)
return attention_mask
pad_func = Pad(pad_val=pad_val, pad_right=False, dtype='int64')
input_ids = pad_func([example['input_ids'] for example in batch_examples])
token_type_ids = pad_func(
[example['token_type_ids'] for example in batch_examples])
position_ids = pad_func(
[example['position_ids'] for example in batch_examples])
attention_mask = pad_mask(
[example['attention_mask'] for example in batch_examples])
if mode != 'test':
max_len = max([example['seq_len'] for example in batch_examples])
masked_positions = np.concatenate([
np.array(example['masked_positions']) +
(max_len - example['seq_len']) + i * max_len
for i, example in enumerate(batch_examples)
])
labels = np.concatenate([
np.array(
example['labels'], dtype='int64') for example in batch_examples
])
return input_ids, token_type_ids, position_ids, attention_mask, masked_positions, labels
else:
seq_len = np.asarray(
[example['seq_len'] for example in batch_examples]).astype("int32")
return input_ids, token_type_ids, position_ids, attention_mask, seq_len
def create_data_loader(dataset, tokenizer, args, mode):
trans_func1 = partial(preprocess_examples, mode=mode)
trans_func2 = partial(
convert_example,
tokenizer=tokenizer,
max_seq_len=args.max_seq_len,
max_response_len=args.max_response_len,
max_knowledge_len=args.max_knowledge_len,
mode=mode)
dataset = dataset.map(trans_func1, batched=True).map(trans_func2, lazy=True)
if mode == 'train':
batch_sampler = DistributedBatchSampler(
dataset, batch_size=args.batch_size, shuffle=True)
else:
batch_sampler = BatchSampler(
dataset, batch_size=args.batch_size, shuffle=False)
collate_fn = partial(batchify_fn, pad_val=tokenizer.pad_token_id, mode=mode)
data_loader = DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn,
return_list=True)
return dataset, data_loader
def post_process_response(token_ids, tokenizer):
"""Post-process the decoded sequence. Truncate from the first <eos>."""
eos_pos = len(token_ids)
for i, tok_id in enumerate(token_ids):
if tok_id == tokenizer.sep_token_id:
eos_pos = i
break
token_ids = token_ids[:eos_pos]
tokens = tokenizer.convert_ids_to_tokens(token_ids)
tokens = tokenizer.merge_subword(tokens)
return token_ids, tokens
def get_in_turn_repetition(pred, is_cn=False):
"""Get in-turn repetition."""
if len(pred) == 0:
return 1.0
if isinstance(pred[0], str):
pred = [tok.lower() for tok in pred]
if is_cn:
pred = "".join(pred)
tri_grams = set()
for i in range(len(pred) - 2):
tri_gram = tuple(pred[i:i + 3])
if tri_gram in tri_grams:
return True
tri_grams.add(tri_gram)
return False
def select_response(ids,
scores,
tokenizer,
max_dec_len=None,
num_return_sequences=1,
keep_space=True):
results = []
group = []
tmp = []
if scores is not None:
ids = ids.numpy()
scores = scores.numpy()
if len(ids) != len(scores) or (len(ids) % num_return_sequences) != 0:
raise ValueError(
"the length of `ids` is {}, but the `num_return_sequences` is {}".
format(len(ids), num_return_sequences))
for pred, score in zip(ids, scores):
pred_token_ids, pred_tokens = post_process_response(pred, tokenizer)
num_token = len(pred_token_ids)
if keep_space:
response = " ".join(pred_tokens)
else:
response = "".join(pred_tokens)
in_turn_repetition = get_in_turn_repetition(
pred_tokens, True) or get_in_turn_repetition(pred_token_ids)
# not ending
if max_dec_len is not None and num_token >= max_dec_len:
score -= 1e3
elif in_turn_repetition:
score -= 1e3
tmp.append([response, score])
if len(tmp) == num_return_sequences:
group.append(tmp)
tmp = []
for preds in group:
preds = sorted(preds, key=lambda x: -x[1])
results.append(preds[0][0])
else:
ids = ids.numpy()
for pred in ids:
pred_token_ids, pred_tokens = post_process_response(pred, tokenizer)
num_token = len(pred_token_ids)
if keep_space:
response = " ".join(pred_tokens)
else:
response = "".join(pred_tokens)
in_turn_repetition = get_in_turn_repetition(
pred_tokens, True) or get_in_turn_repetition(pred_token_ids)
last_pos = 0
if (max_dec_len is not None and
num_token >= max_dec_len) or in_turn_repetition:
tmp.append([response])
else:
tmp.insert(last_pos, [response])
last_pos += 1
if len(tmp) == num_return_sequences:
group.append(tmp)
tmp = []
for preds in group:
results.append(preds[0][0])
return results