forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
183 lines (165 loc) · 8.06 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) 2021 Baidu.com, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import codecs
import json
import os
import re
import zipfile
import numpy as np
def find_entity(text_raw, id_, predictions, tok_to_orig_start_index,
tok_to_orig_end_index):
"""
retrieval entity mention under given predicate id for certain prediction.
this is called by the "decoding" func.
"""
entity_list = []
for i in range(len(predictions)):
if [id_] in predictions[i]:
j = 0
while i + j + 1 < len(predictions):
if [1] in predictions[i + j + 1]:
j += 1
else:
break
entity = ''.join(text_raw[tok_to_orig_start_index[i]:
tok_to_orig_end_index[i + j] + 1])
entity_list.append(entity)
return list(set(entity_list))
def decoding(example_batch, id2spo, logits_batch, seq_len_batch,
tok_to_orig_start_index_batch, tok_to_orig_end_index_batch):
"""
model output logits -> formatted spo (as in data set file)
"""
formatted_outputs = []
for (i, (example, logits, seq_len, tok_to_orig_start_index, tok_to_orig_end_index)) in \
enumerate(zip(example_batch, logits_batch, seq_len_batch, tok_to_orig_start_index_batch, tok_to_orig_end_index_batch)):
logits = logits[1:seq_len +
1] # slice between [CLS] and [SEP] to get valid logits
logits[logits >= 0.5] = 1
logits[logits < 0.5] = 0
tok_to_orig_start_index = tok_to_orig_start_index[1:seq_len + 1]
tok_to_orig_end_index = tok_to_orig_end_index[1:seq_len + 1]
predictions = []
for token in logits:
predictions.append(np.argwhere(token == 1).tolist())
# format predictions into example-style output
formatted_instance = {}
text_raw = example['text']
complex_relation_label = [8, 10, 26, 32, 46]
complex_relation_affi_label = [9, 11, 27, 28, 29, 33, 47]
# flatten predictions then retrival all valid subject id
flatten_predictions = []
for layer_1 in predictions:
for layer_2 in layer_1:
flatten_predictions.append(layer_2[0])
subject_id_list = []
for cls_label in list(set(flatten_predictions)):
if 1 < cls_label <= 56 and (cls_label + 55) in flatten_predictions:
subject_id_list.append(cls_label)
subject_id_list = list(set(subject_id_list))
# fetch all valid spo by subject id
spo_list = []
for id_ in subject_id_list:
if id_ in complex_relation_affi_label:
continue # do this in the next "else" branch
if id_ not in complex_relation_label:
subjects = find_entity(text_raw, id_, predictions,
tok_to_orig_start_index,
tok_to_orig_end_index)
objects = find_entity(text_raw, id_ + 55, predictions,
tok_to_orig_start_index,
tok_to_orig_end_index)
for subject_ in subjects:
for object_ in objects:
spo_list.append({
"predicate": id2spo['predicate'][id_],
"object_type": {
'@value': id2spo['object_type'][id_]
},
'subject_type': id2spo['subject_type'][id_],
"object": {
'@value': object_
},
"subject": subject_
})
else:
# traverse all complex relation and look through their corresponding affiliated objects
subjects = find_entity(text_raw, id_, predictions,
tok_to_orig_start_index,
tok_to_orig_end_index)
objects = find_entity(text_raw, id_ + 55, predictions,
tok_to_orig_start_index,
tok_to_orig_end_index)
for subject_ in subjects:
for object_ in objects:
object_dict = {'@value': object_}
object_type_dict = {
'@value': id2spo['object_type'][id_].split('_')[0]
}
if id_ in [8, 10, 32, 46
] and id_ + 1 in subject_id_list:
id_affi = id_ + 1
object_dict[id2spo['object_type'][id_affi].split(
'_')[1]] = find_entity(text_raw, id_affi + 55,
predictions,
tok_to_orig_start_index,
tok_to_orig_end_index)[0]
object_type_dict[id2spo['object_type'][
id_affi].split('_')[1]] = id2spo['object_type'][
id_affi].split('_')[0]
elif id_ == 26:
for id_affi in [27, 28, 29]:
if id_affi in subject_id_list:
object_dict[id2spo['object_type'][id_affi].split('_')[1]] = \
find_entity(text_raw, id_affi + 55, predictions, tok_to_orig_start_index, tok_to_orig_end_index)[0]
object_type_dict[id2spo['object_type'][id_affi].split('_')[1]] = \
id2spo['object_type'][id_affi].split('_')[0]
spo_list.append({
"predicate": id2spo['predicate'][id_],
"object_type": object_type_dict,
"subject_type": id2spo['subject_type'][id_],
"object": object_dict,
"subject": subject_
})
formatted_instance['text'] = example['text']
formatted_instance['spo_list'] = spo_list
formatted_outputs.append(formatted_instance)
return formatted_outputs
def write_prediction_results(formatted_outputs, file_path):
"""write the prediction results"""
with codecs.open(file_path, 'w', 'utf-8') as f:
for formatted_instance in formatted_outputs:
json_str = json.dumps(formatted_instance, ensure_ascii=False)
f.write(json_str)
f.write('\n')
zipfile_path = file_path + '.zip'
f = zipfile.ZipFile(zipfile_path, 'w', zipfile.ZIP_DEFLATED)
f.write(file_path)
return zipfile_path
def get_precision_recall_f1(golden_file, predict_file):
r = os.popen(
'python3 ./re_official_evaluation.py --golden_file={} --predict_file={}'.
format(golden_file, predict_file))
result = r.read()
r.close()
precision = float(
re.search("\"precision\", \"value\":.*?}", result).group(0).lstrip(
"\"precision\", \"value\":").rstrip("}"))
recall = float(
re.search("\"recall\", \"value\":.*?}", result).group(0).lstrip(
"\"recall\", \"value\":").rstrip("}"))
f1 = float(
re.search("\"f1-score\", \"value\":.*?}", result).group(0).lstrip(
"\"f1-score\", \"value\":").rstrip("}"))
return precision, recall, f1