forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
reader.py
402 lines (347 loc) · 13.7 KB
/
reader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import os
import io
import itertools
from functools import partial
import numpy as np
from paddle.io import BatchSampler, DataLoader, Dataset
import paddle.distributed as dist
from paddlenlp.data import Pad, Vocab
from paddlenlp.datasets import load_dataset
from paddlenlp.data.sampler import SamplerHelper
def min_max_filer(data, max_len, min_len=0):
# 1 for special tokens.
data_min_len = min(len(data[0]), len(data[1])) + 1
data_max_len = max(len(data[0]), len(data[1])) + 1
return (data_min_len >= min_len) and (data_max_len <= max_len)
def create_data_loader(args, places=None):
if args.train_file is not None and args.dev_file is not None:
datasets = load_dataset(
'wmt14ende',
data_files=[args.train_file, args.dev_file],
splits=('train', 'dev'))
elif args.train_file is None and args.dev_file is None:
datasets = load_dataset('wmt14ende', splits=('train', 'dev'))
else:
raise ValueError(
"--train_file and --dev_file must be both or neither set. ")
if args.vocab_file is not None:
src_vocab = Vocab.load_vocabulary(
filepath=args.vocab_file,
unk_token=args.unk_token,
bos_token=args.bos_token,
eos_token=args.eos_token)
elif not args.benchmark:
src_vocab = Vocab.load_vocabulary(**datasets[0].vocab_info["bpe"])
else:
src_vocab = Vocab.load_vocabulary(**datasets[0].vocab_info["benchmark"])
trg_vocab = src_vocab
padding_vocab = (
lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
)
args.src_vocab_size = padding_vocab(len(src_vocab))
args.trg_vocab_size = padding_vocab(len(trg_vocab))
def convert_samples(sample):
source = sample[args.src_lang].split()
target = sample[args.trg_lang].split()
source = src_vocab.to_indices(source)
target = trg_vocab.to_indices(target)
return source, target
data_loaders = [(None)] * 2
for i, dataset in enumerate(datasets):
dataset = dataset.map(convert_samples, lazy=False).filter(
partial(
min_max_filer, max_len=args.max_length))
batch_sampler = TransformerBatchSampler(
dataset=dataset,
batch_size=args.batch_size,
pool_size=args.pool_size,
sort_type=args.sort_type,
shuffle=args.shuffle,
shuffle_batch=args.shuffle_batch,
use_token_batch=True,
max_length=args.max_length,
distribute_mode=True if i == 0 else False,
world_size=dist.get_world_size(),
rank=dist.get_rank(),
pad_seq=args.pad_seq,
bsz_multi=args.bsz_multi)
data_loader = DataLoader(
dataset=dataset,
places=places,
batch_sampler=batch_sampler,
collate_fn=partial(
prepare_train_input,
bos_idx=args.bos_idx,
eos_idx=args.eos_idx,
pad_idx=args.bos_idx,
pad_seq=args.pad_seq,
dtype=args.input_dtype),
num_workers=args.num_workers)
data_loaders[i] = (data_loader)
return data_loaders
def create_infer_loader(args):
if args.test_file is not None:
dataset = load_dataset(
'wmt14ende', data_files=[args.test_file], splits=['test'])
else:
dataset = load_dataset('wmt14ende', splits=('test'))
if args.vocab_file is not None:
src_vocab = Vocab.load_vocabulary(
filepath=args.vocab_file,
unk_token=args.unk_token,
bos_token=args.bos_token,
eos_token=args.eos_token)
elif not args.benchmark:
src_vocab = Vocab.load_vocabulary(**dataset.vocab_info["bpe"])
else:
src_vocab = Vocab.load_vocabulary(**dataset.vocab_info["benchmark"])
trg_vocab = src_vocab
padding_vocab = (
lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
)
args.src_vocab_size = padding_vocab(len(src_vocab))
args.trg_vocab_size = padding_vocab(len(trg_vocab))
def convert_samples(sample):
source = sample[args.src_lang].split()
target = sample[args.trg_lang].split()
source = src_vocab.to_indices(source)
target = trg_vocab.to_indices(target)
return source, target
dataset = dataset.map(convert_samples, lazy=False)
batch_sampler = SamplerHelper(dataset).batch(
batch_size=args.infer_batch_size, drop_last=False)
data_loader = DataLoader(
dataset=dataset,
batch_sampler=batch_sampler,
collate_fn=partial(
prepare_infer_input,
bos_idx=args.bos_idx,
eos_idx=args.eos_idx,
pad_idx=args.bos_idx,
pad_seq=args.pad_seq,
dtype=args.input_dtype),
num_workers=args.num_workers,
return_list=True)
return data_loader, trg_vocab.to_tokens
def adapt_vocab_size(args):
if args.vocab_file is not None:
src_vocab = Vocab.load_vocabulary(
filepath=args.vocab_file,
unk_token=args.unk_token,
bos_token=args.bos_token,
eos_token=args.eos_token)
else:
dataset = load_dataset('wmt14ende', splits=('test'))
if not args.benchmark:
src_vocab = Vocab.load_vocabulary(**dataset.vocab_info["bpe"])
else:
src_vocab = Vocab.load_vocabulary(**dataset.vocab_info["benchmark"])
trg_vocab = src_vocab
padding_vocab = (
lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
)
args.src_vocab_size = padding_vocab(len(src_vocab))
args.trg_vocab_size = padding_vocab(len(trg_vocab))
def prepare_train_input(insts,
bos_idx,
eos_idx,
pad_idx,
pad_seq=1,
dtype="int64"):
"""
Put all padded data needed by training into a list.
"""
word_pad = Pad(pad_idx, dtype=dtype)
src_max_len = (
max([len(inst[0]) for inst in insts]) + pad_seq) // pad_seq * pad_seq
trg_max_len = (
max([len(inst[1]) for inst in insts]) + pad_seq) // pad_seq * pad_seq
src_word = word_pad([
inst[0] + [eos_idx] + [pad_idx] * (src_max_len - 1 - len(inst[0]))
for inst in insts
])
trg_word = word_pad([[bos_idx] + inst[1] + [pad_idx] *
(trg_max_len - 1 - len(inst[1])) for inst in insts])
lbl_word = np.expand_dims(
word_pad([
inst[1] + [eos_idx] + [pad_idx] * (trg_max_len - 1 - len(inst[1]))
for inst in insts
]),
axis=2)
data_inputs = [src_word, trg_word, lbl_word]
return data_inputs
def prepare_infer_input(insts,
bos_idx,
eos_idx,
pad_idx,
pad_seq=1,
dtype="int64"):
"""
Put all padded data needed by beam search decoder into a list.
"""
word_pad = Pad(pad_idx, dtype=dtype)
src_max_len = (
max([len(inst[0]) for inst in insts]) + pad_seq) // pad_seq * pad_seq
src_word = word_pad([
inst[0] + [eos_idx] + [pad_idx] * (src_max_len - 1 - len(inst[0]))
for inst in insts
])
return [src_word, ]
class SortType(object):
GLOBAL = 'global'
POOL = 'pool'
NONE = "none"
class SentenceBatchCreator(object):
def __init__(self, batch_size):
self.batch = []
self._batch_size = batch_size
def append(self, info):
self.batch.append(info)
if len(self.batch) == self._batch_size:
tmp = self.batch
self.batch = []
return tmp
class TokenBatchCreator(object):
def __init__(self, batch_size, bsz_multi=1):
self._batch = []
self.max_len = -1
self._batch_size = batch_size
self._bsz_multi = bsz_multi
def append(self, info):
cur_len = info.max_len
max_len = max(self.max_len, cur_len)
if max_len * (len(self._batch) + 1) > self._batch_size:
# Make sure the batch size won't be empty.
mode_len = max(
len(self._batch) // self._bsz_multi * self._bsz_multi,
len(self._batch) % self._bsz_multi)
result = self._batch[:mode_len]
self._batch = self._batch[mode_len:]
self._batch.append(info)
self.max_len = max([b.max_len for b in self._batch])
return result
else:
self.max_len = max_len
self._batch.append(info)
@property
def batch(self):
return self._batch
class SampleInfo(object):
def __init__(self, i, lens, pad_seq=1):
self.i = i
# Take bos and eos into account
self.min_len = min(lens[0], lens[1]) + 1
self.max_len = (max(lens[0], lens[1]) + pad_seq) // pad_seq * pad_seq
self.seq_max_len = max(lens[0], lens[1]) + 1
self.src_len = lens[0] + 1
self.trg_len = lens[1] + 1
class TransformerBatchSampler(BatchSampler):
def __init__(self,
dataset,
batch_size,
pool_size=10000,
sort_type=SortType.NONE,
min_length=0,
max_length=100,
shuffle=False,
shuffle_batch=False,
use_token_batch=False,
clip_last_batch=False,
distribute_mode=True,
seed=0,
world_size=1,
rank=0,
pad_seq=1,
bsz_multi=8):
for arg, value in locals().items():
if arg != "self":
setattr(self, "_" + arg, value)
self._random = np.random
self._random.seed(seed)
# for multi-devices
self._distribute_mode = distribute_mode
self._nranks = world_size
self._local_rank = rank
self._sample_infos = []
for i, data in enumerate(self._dataset):
lens = [len(data[0]), len(data[1])]
self._sample_infos.append(SampleInfo(i, lens, self._pad_seq))
def __iter__(self):
# global sort or global shuffle
if self._sort_type == SortType.GLOBAL:
infos = sorted(self._sample_infos, key=lambda x: x.trg_len)
infos = sorted(infos, key=lambda x: x.src_len)
else:
if self._shuffle:
infos = self._sample_infos
self._random.shuffle(infos)
else:
infos = self._sample_infos
if self._sort_type == SortType.POOL:
reverse = True
for i in range(0, len(infos), self._pool_size):
# To avoid placing short next to long sentences
reverse = not reverse
infos[i:i + self._pool_size] = sorted(
infos[i:i + self._pool_size],
key=lambda x: x.seq_max_len,
reverse=reverse)
batches = []
batch_creator = TokenBatchCreator(
self._batch_size,
self._bsz_multi) if self._use_token_batch else SentenceBatchCreator(
self._batch_size * self._nranks)
for info in infos:
batch = batch_creator.append(info)
if batch is not None:
batches.append(batch)
if not self._clip_last_batch and len(batch_creator.batch) != 0:
batches.append(batch_creator.batch)
if self._shuffle_batch:
self._random.shuffle(batches)
if not self._use_token_batch:
# When producing batches according to sequence number, to confirm
# neighbor batches which would be feed and run parallel have similar
# length (thus similar computational cost) after shuffle, we as take
# them as a whole when shuffling and split here
batches = [[
batch[self._batch_size * i:self._batch_size * (i + 1)]
for i in range(self._nranks)
] for batch in batches]
batches = list(itertools.chain.from_iterable(batches))
self.batch_number = (len(batches) + self._nranks - 1) // self._nranks
# for multi-device
for batch_id, batch in enumerate(batches):
if not self._distribute_mode or (
batch_id % self._nranks == self._local_rank):
batch_indices = [info.i for info in batch]
yield batch_indices
if self._distribute_mode and len(batches) % self._nranks != 0:
if self._local_rank >= len(batches) % self._nranks:
# use previous data to pad
yield batch_indices
def __len__(self):
if hasattr(self, "batch_number"): #
return self.batch_number
if not self._use_token_batch:
batch_number = (
len(self._dataset) + self._batch_size * self._nranks - 1) // (
self._batch_size * self._nranks)
else:
# For uncertain batch number, the actual value is self.batch_number
batch_number = sys.maxsize
return batch_number