-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathanalysis.ml
885 lines (842 loc) · 31.9 KB
/
analysis.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
open Common
open Ast
open Cdefs
open Printf
let instr_type = function
(* T0, because we want them at every stage *)
| Lbl(_)
| Comment(_)
| AdvanceStack(_)
| RawHex(_)
| MovRegConst(_,_)
| MovRegReg(_,_)
| MovRegSymb(_,_)
| WriteM(_,_)
| ReadM(_,_)
| SaveFlags
| OpStack(_,_)
| BinO(_,_,_,_) -> T0
| ReadMConst(_,_)
| WriteMConst(_,_) -> T1
| LocalAddr(_,_)
| PushReg(_)
| PopReg(_) -> T2
| ReadLocal(_,_)
| WriteLocal(_,_) -> T3
(* IN: instr, gmeta list *)
(* OUT: gmeta corresponding to instr *)
let find_all_gmetas instr gms =
let find_gms f_match =
let pred gm =
let GMeta(g,_,_,_) = gm in
f_match g gm
in
List.filter pred gms
in
let is_opstack g = match g with Common.OpEsp(_,_,_) -> true | _ -> false in
let get_stack_fix gm = let GMeta(_,_,_,sf) = gm in sf in
let f_match_movreg r g gm = match g with Common.LoadConst(gr,_) -> gr=r | _ -> false in
let f_match_op_esp op r g gm = match g with Common.OpEsp(gop, gr, _) -> (gop=op && gr=r) | _ -> false in
let f_match =
match instr with
| OpStack(op, C(r)) ->
let op' = ast_op_to_gadget_op op in
f_match_op_esp op' r
| BinO(C(r0), C(r1), op, C(r2)) ->
let op' = ast_op_to_gadget_op op in
fun g gm -> g = Common.BinOp(r0, r1, op', r2)
| WriteM(C(addr_reg), C(src_reg)) ->
fun g gm -> g = Common.WriteMem(addr_reg, Int32.zero, src_reg)
| ReadM(C(dst_reg), C(addr_reg)) ->
fun g gm -> g = Common.ReadMem(dst_reg, addr_reg, Int32.zero)
(* movregsymb will be converted to mov reg const *)
| MovRegConst(C(r),_) | MovRegSymb(C(r),_) ->
f_match_movreg r
| MovRegReg(C(dst), C(src)) ->
fun g gm -> g = Common.CopyReg(dst,src)
| SaveFlags ->
fun g gm -> g = Common.Lahf
| AdvanceStack(n) ->
fun g gm -> (not (is_opstack g)) && (get_stack_fix gm = n)
(* Can match anything, but this simplifies things *)
| RawHex(_) ->
fun g gm -> get_stack_fix gm = 4
(* we don't want to lose these, so match with anything *)
| Lbl(_) | Comment(_) -> fun g gm -> true
| _ -> assert false
in
let matching_gms = find_gms f_match in
if matching_gms = [] then raise Not_found
else matching_gms
let make_implement stack_ptr frame_ptr =
let implement_t1 f_next_reg instr =
match instr with
| ReadMConst(r, addr) ->
let reg = f_next_reg () in
let mov = MovRegConst(reg, addr) in
let rm = ReadM(r, reg) in
[mov;rm]
| WriteMConst(addr,r) ->
let addr_reg = f_next_reg () in
let mov = MovRegConst(addr_reg, addr) in
let wm = WriteM(addr_reg, r) in
[mov;wm]
| _ -> assert false
in
let implement_t2 f_next_reg instr =
match instr with
| PushReg(r) ->
let addr_reg = f_next_reg () in
let rm = ReadMConst(addr_reg, stack_ptr) in
let wm1 = WriteM(addr_reg, r) in
let reg1 = f_next_reg () in
let rm2 = ReadMConst(reg1, stack_ptr) in
let reg2 = f_next_reg () in
let mov = MovRegConst(reg2, 4) in
let reg3 = f_next_reg () in
let sub = BinO(reg3, reg1, Sub, reg2) in
let wm2 = WriteMConst(stack_ptr, reg3) in
[rm;wm1;rm2;mov;sub;wm2]
| PopReg(r) ->
let reg1 = f_next_reg () in
let rm1 = ReadMConst(reg1, stack_ptr) in
let reg2 = f_next_reg () in
let mov = MovRegConst(reg2, 4) in
let reg3 = f_next_reg () in
let sub = BinO(reg3, reg1, Add, reg2) in
let wm = WriteMConst(stack_ptr, reg3) in
let rm2 = ReadM(r, reg3) in
[rm1;mov;sub;wm;rm2;]
| LocalAddr(off,r) ->
let reg1 = f_next_reg () in
let rm1 = ReadMConst(reg1, frame_ptr) in
let reg2 = f_next_reg () in
let mov = MovRegConst(reg2, off) in
let add = BinO(r, reg1, Add, reg2) in
[rm1;mov;add;]
| _ -> assert false
in
let implement_t3 f_next_reg instr =
match instr with
| ReadLocal(off, r) ->
let addr_reg = f_next_reg () in
let la = LocalAddr(off, addr_reg) in
let rm = ReadM(r, addr_reg) in
[la;rm]
| WriteLocal(off, r) ->
let addr_reg = f_next_reg () in
let la = LocalAddr(off, addr_reg) in
let wm = WriteM(addr_reg, r) in
[la;wm]
(* Caller should be aware these are special *)
| Lbl(_)
| Comment(_) -> assert false
| _ -> assert false
in
let implement instr =
let type2idx = function T3 -> 2 | T2 -> 1 | T1 -> 0 | T0 -> assert false in
let init () =
let f_next_reg = make_reg_generator () in
let funs = [implement_t1;implement_t2;implement_t3] in
let funs = List.map (fun f -> f f_next_reg) funs in
funs
in
let funs = init () in
let typ = instr_type instr in
let idx = type2idx typ in
let f_implement = List.nth funs idx in
f_implement instr
in
implement
let arg_dumper instr =
match instr with
| AdvanceStack(_) -> []
| RawHex(_) -> []
| MovRegConst(a1,_) -> [a1]
| MovRegReg(a1,a2) -> [a1;a2]
| MovRegSymb(a1,_) -> [a1]
| WriteM(a1,a2) -> [a1;a2]
| ReadM(a1,a2) -> [a1;a2]
| SaveFlags -> []
| OpStack(_,a1) -> [a1]
| BinO(a1,a2,_,a3) -> [a1;a2;a3]
| ReadMConst(a1,_)
| WriteMConst(_,a1) -> [a1]
| LocalAddr(_,a1)
| PushReg(a1)
| PopReg(a1) -> [a1]
| ReadLocal(_,a1)
| WriteLocal(_,a1) -> [a1]
| Lbl(_)
| Comment(_) -> []
let number_of_args instr = List.length (arg_dumper instr)
let arg_positions instr arg =
let args = arg_dumper instr in
let enum (i,l) x = (i+1,(i,x)::l) in
let _, args = List.fold_left enum (0,[]) args in
let args = List.filter (fun (_,a) -> a=arg) args in
let positions = List.map fst args in
positions
(* get possible regs at position pos for instructions matching type of instr.
* for example: BinOp(r0,_,+,_) 0 -> possible values for r0 *)
let possible_regs_t0 gms instr =
let f_binop op =
let f acc g =
match g with
| Common.BinOp(r0, r1, op', r2) -> if op = op' then ([r0;r1;r2]::acc) else acc
| _ -> acc
in
f
in
let f_op_esp op =
let f acc g =
match g with
| Common.OpEsp(op', r, _) -> if op = op' then ([r]::acc) else acc
| _ -> acc
in
f
in
let f_write_mem acc g =
match g with
| Common.WriteMem(r0, _, r1) -> ([r0;r1]::acc)
| _ -> acc
in
let f_read_mem acc g =
match g with
| Common.ReadMem(r0, r1, _) -> ([r0;r1]::acc)
| _ -> acc
in
let f_load_const acc g =
match g with
| Common.LoadConst(r,_) -> ([r]::acc)
| _ -> acc
in
let f_copy_reg acc g =
match g with
| Common.CopyReg(r0,r1) -> ([r0;r1]::acc)
| _ -> acc
in
(* [[a1;..];[b1..]] -> [a1;b1],[[..];[..]] *)
let group_args regs =
let f (heads,tails) l =
match l with
| hd::tl -> (hd::heads, tl::tails)
| [] -> assert false
in
let rec aux acc ll =
match ll with
| (hd::_)::tll -> (* at least one non-empty list *)
let (heads,tails) = List.fold_left f ([],[]) ll in
aux (heads::acc) tails
| _ -> List.rev acc
in
aux [] regs
in
let make_sets groups =
let f acc l =
let set = Cdefs.set_from_list l in
set::acc
in
let sets = List.fold_left f [] groups in
List.rev sets
in
let f_collect =
match instr with
| OpStack(op, _) ->
let op' = ast_op_to_gadget_op op in
f_op_esp op'
| WriteM(_, _) -> f_write_mem
| BinO(_, _, op, _) ->
let op' = ast_op_to_gadget_op op in
f_binop op'
| ReadM(_, _) -> f_read_mem
(* movregsymb will be converted to mov reg const *)
| MovRegConst(_,_) | MovRegSymb(_,_) -> f_load_const
| MovRegReg(_, _) -> f_copy_reg
| _ -> assert false
in
(* regs is a list of lists *)
let regs = List.fold_left f_collect [] gms in
let groups = group_args regs in
let sets = make_sets groups in
sets
let matching_func_for_instr instr =
let f_match =
match instr with
| OpStack(op, _) ->
( fun instr -> match instr with OpStack(op'',_) -> op'' = op | _ -> false)
| WriteM(_, _) ->
( fun instr -> match instr with WriteM(_,_) -> true | _ -> false)
| BinO(_, _, op, _) ->
( fun instr -> match instr with BinO(_,_,op'',_) -> op'' = op | _ -> false)
| ReadM(_, _) ->
( fun instr -> match instr with ReadM(_,_) -> true | _ -> false)
(* movregsymb will be converted to mov reg const *)
| MovRegConst(_,_) | MovRegSymb(_,_) ->
( fun instr -> match instr with
MovRegConst(_,_) | MovRegSymb(_,_) -> true |_ -> false)
| MovRegReg(_, _) ->
( fun instr -> match instr with MovRegReg(_,_) -> true | _ -> false)
| ReadMConst(_,_) ->
( fun instr -> match instr with ReadMConst(_,_) -> true | _ -> false )
| WriteMConst(_,_) ->
( fun instr -> match instr with WriteMConst(_,_) -> true | _ -> false)
| LocalAddr(_,_) ->
( fun instr -> match instr with LocalAddr(_,_) -> true | _ -> false)
| PushReg(_)->
( fun instr -> match instr with PushReg(_) -> true | _ -> false)
| PopReg(_) ->
( fun instr -> match instr with PopReg(_) -> true | _ -> false)
| ReadLocal(_,_)->
( fun instr -> match instr with ReadLocal(_,_) -> true | _ -> false)
| WriteLocal(_,_) ->
( fun instr -> match instr with WriteLocal(_,_) -> true | _ -> false)
| AdvanceStack(_)->
( fun instr -> match instr with AdvanceStack(_) -> true | _ -> false)
| RawHex(_) ->
( fun instr -> match instr with RawHex(_) -> true | _ -> false)
| Lbl(_)-> assert false
| Comment(_) -> assert false
| _ -> assert false
in
f_match
(* Make f_assign x an identity for concrete regs *)
let wrap_f_assign f =
let g r =
match r with
| C(_) -> (try f r with _ -> r)
| S(_) -> (try f r with _ -> assert false)
in
g
let apply_assignment f_assign instr =
let f = wrap_f_assign f_assign in
match instr with
| MovRegConst(r,c) -> MovRegConst(f r,c)
| MovRegSymb(r,sc) -> MovRegSymb(f r,sc)
| ReadMConst(r,ma) -> ReadMConst(f r,ma)
| WriteMConst(ma,r) -> WriteMConst(ma,f r)
| ReadLocal(off,r) -> ReadLocal(off,f r)
| WriteLocal(off,r) -> WriteLocal(off,f r)
| LocalAddr(v,r) -> LocalAddr(v,f r)
| PopReg(r) -> PopReg(f r)
| PushReg(r) -> PushReg(f r)
| OpStack(op, r) -> OpStack(op, f r)
| MovRegReg(r1,r2) -> MovRegReg(f r1,f r2)
| WriteM(r1,r2) -> WriteM(f r1,f r2)
| ReadM(r1,r2) -> ReadM(f r1,f r2)
| BinO(ro,r1,op,r2) -> BinO(f ro, f r1, op, f r2)
(*
| AdvanceStack
| RawHex
| SaveFlags
| Lbl(_)
| Comment(_)
*)
| _ -> instr
let make_cache_funs () =
let cache = ref (fun i p -> raise Not_found) in
let cache_add instr reg_set_list =
let f_match = matching_func_for_instr instr in
let new_cache i p =
if f_match i then
List.nth reg_set_list p
else
!cache i p (* FIXME ? *)
in
begin
cache := new_cache
end
in
let cache_test instr pos =
try let _ = !cache instr pos in true with Not_found -> false
in
let cache_get instr pos =
try !cache instr pos with Not_found -> assert false
in
(cache_add,cache_test,cache_get)
(* All registers used in implementations are "local".
* Use noncolliding regs for params: S(-1), S(-2) ... *)
let make_fake_instr instr =
let args = arg_dumper instr in
let f (n,f_assign) arg =
let f_new x = if x=arg then (S(-n)) else f_assign x in
(n+1, f_new)
in
let f_assert = (fun x->assert false) in
let (_, f_assign) = List.fold_left f (1, f_assert) args in
let fake_instr = apply_assignment f_assign instr in
fake_instr
(* *by_pos/by_arg are mutually recursive.
* by_pos returns possible regs for ith argument
* by_arg returns possible regs for a specific arg
* difference: if two args are equal then we need to intersect corresponding
* sets *)
let make_possible_regs_funs gadgets implement =
(* let (cache_add,cache_test,cache_get) = make_cache_funs () in *)
let rec possible_regs_by_pos gadgets implement instr pos =
let possible_regs_t0 = possible_regs_t0 gadgets in
let cache_add instr reg_set_list =
()
in
(* FIXME *)
let cache_test instr pos = false in
let cache_get instr pos = assert false in
let higher_t instr pos =
let process_impl impl arg =
let collect reg_set instr =
let regs = possible_regs_by_arg gadgets implement instr arg in
RegSet.inter reg_set regs
in
List.fold_left collect fULL_REG_SET impl
in
(* Beware: this works correctly only because higher types don't take multiple reg params *)
let fake_instr = make_fake_instr instr in
let args = arg_dumper fake_instr in
let impl = implement fake_instr in
let f acc arg =
let regs = process_impl impl arg in
regs::acc
in
let possible_for_all_args = List.fold_left f [] args in
List.rev possible_for_all_args
in
if (cache_test instr pos) then
cache_get instr pos
else
(* list of sets. i-th set contains possible regs for ith param *)
let reg_set_list =
let typ = instr_type instr in
match typ with
| T0 ->
(* get possible regs for all arguments *)
let reg_set_list = possible_regs_t0 instr in
reg_set_list
| _ -> higher_t instr pos
in
let _ = cache_add instr reg_set_list in
let total_args = number_of_args instr in
if pos > (total_args-1) then assert false
else List.nth reg_set_list pos
and
possible_regs_by_arg gadgets implement instr arg =
let positions = arg_positions instr arg in
let collect reg_set pos =
let regs = possible_regs_by_pos gadgets implement instr pos in
RegSet.inter reg_set regs
in
List.fold_left collect fULL_REG_SET positions
in
let by_arg = possible_regs_by_arg gadgets implement in
let by_pos = possible_regs_by_pos gadgets implement in
by_arg, by_pos
let mod_read_vars = function
| AdvanceStack(_)
| RawHex(_) -> [],[]
| MovRegConst(r,_)
| MovRegSymb(r,_)
| ReadMConst(r,_)
| ReadLocal(_,r)
| LocalAddr(_,r)
| PopReg(r) -> [r],[]
| WriteLocal(_,r)
| WriteMConst(_,r)
| PushReg(r)
| OpStack(_, r) -> [],[r]
| MovRegReg(r1,r2) -> [r1],[r2]
| WriteM(r1,r2) -> [],[r1;r2]
| ReadM(r1,r2) -> [r1],[r2]
| BinO(ro,r1,op,r2) -> [ro],[r1;r2]
| SaveFlags -> [C(EAX)],[]
| Lbl(_)
| Comment(_) -> [],[]
let mod_vars instr = fst (mod_read_vars instr)
let read_vars instr = snd (mod_read_vars instr)
(* Assumes SSA form.
* Overapproximated for non-SSA.
* Store first write and last read *)
let analyse_reads_writes instrs =
let reads = Hashtbl.create 8 in
let writes = Hashtbl.create 8 in
let update_hashes i instr reads writes =
let wr = mod_vars instr in
let rd = read_vars instr in
(* first write *)
let f_w acc reg =
try
let _ = Hashtbl.find writes reg in
()
with Not_found ->
Hashtbl.add writes reg i
in
(* last read *)
let f_r acc reg = Hashtbl.add reads reg i in
let _ = List.fold_left f_w () wr in
let _ = List.fold_left f_r () rd in
()
in
let f i instr =
let _ = update_hashes i instr reads writes in
i+1
in
let _ = List.fold_left f 0 instrs in
(reads, writes)
let get_kv h =
(* Hashtbl.fold provides history of bindings, but we only want the most
* recent one. *)
let seen = Hashtbl.create 8 in
let f k v acc =
try
let _ = Hashtbl.find seen k in
acc
with Not_found ->
let _ = Hashtbl.add seen k true in
(k,v)::acc
in
let l = Hashtbl.fold f h [] in
l
let inverse_hash h =
let inv = Hashtbl.create 16 in
let kv_pairs = get_kv h in
let f h (k,v) =
let cur = try Hashtbl.find h v with Not_found -> SRegSet.empty in
let cur = SRegSet.add k cur in
let _ = Hashtbl.add h v cur in
h
in
let inv = List.fold_left f inv kv_pairs in
inv
let hash_get h k empty = try Hashtbl.find h k with Not_found -> empty
let find_read_but_not_written reads writes =
let f k v acc =
try
let _ = Hashtbl.find writes k in
acc
with Not_found -> k::acc
in
let in_args = Hashtbl.fold f reads [] in
sreg_set_from_list in_args
(* liveness analysis *)
let analyse_liveness instrs =
let (reads, writes) = analyse_reads_writes instrs in
let l2rd = inverse_hash reads in
let l2wr = inverse_hash writes in
let in_args = find_read_but_not_written reads writes in
let cur = hash_get l2wr 0 SRegSet.empty in
let cur = SRegSet.union cur in_args in
let _ = Hashtbl.add l2wr 0 cur in
(* Add a set of live vars to every instruction.
* il - list of pairs (instr, live_vars)
* alive - alive vars *)
let attach instrs =
let rec aux (line_no, pairs, alive) instrs =
match instrs with
| instr::tl ->
let new_alive = hash_get l2wr line_no SRegSet.empty in
let new_dead = hash_get l2rd line_no SRegSet.empty in
let alive = SRegSet.union (SRegSet.diff alive new_dead) new_alive in
let pair = (instr, alive) in
aux (line_no+1, pair::pairs, alive) tl
| [] -> List.rev pairs
in
aux (0, [], SRegSet.empty) instrs
in
attach instrs
(* Return a hash: sreg -> set of conflicting sregs.
* Vars are in conflict, when they can't share a register (they are both alive at the
* same time).
*)
let calc_conflicts pairs =
let f h (_, alive) =
let g acc sreg =
let cur = hash_get h sreg SRegSet.empty in
let new_set = SRegSet.union cur alive in
Hashtbl.add h sreg new_set
in
let elems = SRegSet.elements alive in
let _ = List.fold_left g () elems in
h
in
let fix h (sreg, set) =
let set' = SRegSet.remove sreg set in
let _ = Hashtbl.add h sreg set' in
h
in
let tmp_hash = Hashtbl.create 16 in
let _ = List.fold_left f tmp_hash pairs in
let kv_pairs = get_kv tmp_hash in
let conflicts = Hashtbl.create 16 in
let conflicts = List.fold_left fix conflicts kv_pairs in
conflicts
let just_symbolic args = List.filter (function S(_) -> true | _ -> false) args
let just_concrete args = List.filter (function C(_) -> true | _ -> false) args
let symbolic_args instr =
let args = arg_dumper instr in
let args = just_symbolic args in
args
(* Returns a hash: sreg->set of possible concrete regs *)
let possible_regs possible_regs_by_arg instrs =
let analyse_one possible instr =
let args = symbolic_args instr in
let f h arg_reg =
let regs = possible_regs_by_arg instr arg_reg in
let cur =
try Hashtbl.find h arg_reg
with Not_found -> regs
in
let cur = RegSet.inter cur regs in
let _ = Hashtbl.add h arg_reg cur in
h
in
let possible = List.fold_left f possible args in
possible
in
let possible = Hashtbl.create 16 in
List.fold_left analyse_one possible instrs
let make_assign_regs gmetas stack_ptr frame_ptr =
let gadgets = get_gadgets gmetas in
let implement = make_implement stack_ptr frame_ptr in
let p_by_arg, p_by_pos = make_possible_regs_funs gadgets implement in
let dprintf depth f =
let pre = String.make (depth*4) ' ' in
let _ = print_string pre in
let _ = f () in
()
in
let rec assign_regs depth instrs top_preserved =
(* Make assignments only for symbolic regs *)
let collect_all_vars instrs =
let collect vars instr =
let args = symbolic_args instr in
let args_set = sreg_set_from_list args in
SRegSet.union vars args_set
in
let set = List.fold_left collect SRegSet.empty instrs in
SRegSet.elements set
in
(* Return all possible assignments of sreg->concrete reg.
* Return a list of functions sreg->reg *)
let all_assignments sregs possible conflicts =
let rec all_perms f_acc sregs =
match sregs with
| sreg::tl ->
let p_concrete_set =
try Hashtbl.find possible sreg with Not_found -> assert false
in
let p_concrete_set = common_reg_set_to_sreg_set p_concrete_set in
let conflicting = try Hashtbl.find conflicts sreg with _ -> assert false in
(* Collect conflicting regs *)
let f sreg acc =
match sreg with
| C(creg) -> SRegSet.add sreg acc
| S(_) ->
begin
try
let creg = f_acc sreg in
SRegSet.add creg acc
with _ -> acc
end
in
let used = SRegSet.fold f conflicting (SRegSet.empty) in
let p_concrete_set = SRegSet.diff p_concrete_set used in
let p_concrete_list = SRegSet.elements p_concrete_set in
let assign_one acc concrete =
let g sr = if sr=sreg then concrete else f_acc sr in
let new_perms = all_perms (g) tl in
new_perms@acc
in
List.fold_left assign_one [] p_concrete_list
| [] -> [f_acc]
in
let f_fail r =
let err = sprintf "Unable to assign to: %s" (dump_sreg r) in
failwith err
in
let perms = all_perms f_fail sregs in
perms
in
(* Apply one of the sregs assignments. Exceptions from this function are
* always an error.
* Regs in "alive" sets are also concretized. *)
let apply_assignment_to_all f_assign pairs =
(* Don't throw exceptions on concretized regs *)
let f_assign = wrap_f_assign f_assign in
let f acc (instr, alive) =
let i = apply_assignment f_assign instr in
let g x acc = SRegSet.add (f_assign x) acc in
let alive = SRegSet.fold g alive SRegSet.empty in
(i,alive)::acc
in
let pairs = List.fold_left f [] pairs in
let pairs = List.rev pairs in
pairs
in
(* Which concrete regs need to be preserved between instructions *)
let calc_preserved pairs =
let f acc (instr, alive) =
let mod_params = mod_vars instr in
let mod_params = sreg_set_from_list mod_params in
(* Instruction can't preserve a param, if it writes to it *)
let preserved = SRegSet.diff alive mod_params in
(instr, preserved)::acc
in
let pairs = List.fold_left f [] pairs in
List.rev pairs
in
let dump_preserved preserved =
let pr sreg = printf "%s;" (dump_sreg sreg) in
let sregs = SRegSet.elements preserved in
let _ = dprintf depth (fun _ -> print_string "$ top_preserved: ") in
let _ = List.map pr sregs in
dprintf depth (fun _ -> print_newline ())
in
(* Check if the assignment is possible.
* If it is, return instructions paired with gmetas *)
let satisfy perms pairs =
(* Throws Not_found if it's impossible to find a gmeta *)
let satisfy_t0 instr preserved =
let check_possible gmeta =
let GMeta(_,_,mod_regs,_) = gmeta in
let mod_regs = List.map (fun r -> C(r)) mod_regs in
let mod_regs = sreg_set_from_list mod_regs in
(*
let si = (dump_instr instr) in
let _ = dprintf depth (fun _ -> printf "@@ %s, preserved: " si) in
let _ = dump_sreg_set preserved in
let _ = printf "%s" ", mod_regs: " in
let _ = dump_sreg_set mod_regs in
let _ = dprintf depth (fun _ -> print_newline ()) in
*)
let inter = SRegSet.inter preserved mod_regs in
(* If the intersection is empty, none of the preserved regs is modified *)
SRegSet.is_empty inter
in
let possible_gmetas = try find_all_gmetas instr gmetas with Not_found -> [] in
(* let _ = dprintf depth (fun _ -> printf "possible gmetas: %d\n" (List.length possible_gmetas)) in *)
(* Throws Not_found *)
let gmeta = List.find check_possible possible_gmetas in
gmeta
in
let satisfy_t instr preserved =
let impl = implement instr in
assign_regs (depth+1) impl preserved
in
let satisfy_one (instr, preserved) top_preserved =
let _ = dprintf depth (fun _ -> printf "implementing %s\n" (dump_instr instr)) in
let preserved = SRegSet.union preserved top_preserved in
let typ = instr_type instr in
let pairs =
match typ with
| T0 ->
let gmeta = satisfy_t0 instr preserved in
[(instr, gmeta)]
| _ -> satisfy_t instr preserved
in
pairs
in
let satisfy_all c_pairs top_preserved =
let f acc (instr,preserved) =
let impl = satisfy_one (instr, preserved) top_preserved in
acc@impl
in
let impl = List.fold_left f [] c_pairs in
impl
in
(* Test all possible assignments *)
let rec aux perms =
match perms with
| f_assign::tl ->
begin
(* Concretize all regs *)
let c_pairs = apply_assignment_to_all f_assign pairs in
(* Remove unnecessary regs from 'alive' set *)
let c_pairs = calc_preserved c_pairs in
try
let impl = satisfy_all c_pairs top_preserved in
f_assign, impl
with Not_found ->
aux tl
end
| [] ->
(* No assignment is satisfiable *)
raise Not_found
in
let f_assign, impl = aux perms in
f_assign, impl
in
let dump_one_perm vars f_assign =
let f sreg = (sreg, f_assign sreg) in
let l = List.map f vars in
let pr (s,c) = dprintf depth (fun _ -> printf "%s -> %s\n" (dump_sreg s) (dump_sreg c)) in
let _ = List.map pr l in
()
in
(* IN: satisfiable assignment, (instr, gmeta) pairs *)
let dump_satisfied vars f_assign pairs =
let _ = dprintf depth (fun _ -> print_endline "%%% winner assignment:") in
let _ = dump_one_perm vars f_assign in
let _ = dprintf depth (fun _ -> print_endline "%%% paired:") in
let f (instr, gmeta) =
let _ = dprintf depth (fun _ -> printf "%s\n" (dump_instr instr)) in
()
in
let _ = List.map f pairs in
()
in
let dump vars possible conflicts perms top_preserved pairs =
let dump_possible possible =
let pr (sreg,set) =
let set = common_reg_set_to_sreg_set set in
let _ = dprintf depth (fun _ -> printf "%s in {" (dump_sreg sreg)) in
let _ = dump_sreg_set set in
let _ = dprintf depth (fun _ -> printf "%s\n" "}") in
()
in
let _ = dprintf depth (fun _ -> printf "%s\n" "$ possible") in
let kv = get_kv possible in
List.map pr kv
in
let dump_conflicts h =
let _ = dprintf depth (fun _ -> printf "%s\n" "$ conflicts") in
let kv = get_kv h in
let pr (k,v) =
let _ = dprintf depth (fun _ -> printf "%s conflicts: " (dump_sreg k)) in
let _ = dump_sreg_set v in
dprintf depth (fun _ -> print_newline ())
in
let _ = List.map pr kv in
()
in
let dump_perms perms =
let _ = dprintf depth (fun _ -> printf "%s\n" "$ perms") in
let pr perm =
let _ = dump_one_perm vars perm in
dprintf depth (fun _ -> print_endline "-")
in
let _ = List.map pr perms in
()
in
let print_pair (instr, alive) =
let _ = dprintf depth (fun _ -> Printf.printf "%s alive: " (dump_instr instr)) in
let _ = dump_sreg_set alive in
print_newline ()
in
let _ = dprintf depth (fun _ -> print_endline "--------------") in
let _ = List.map print_pair pairs in
let _ = dump_preserved top_preserved in
let _ = dump_possible possible in
let _ = dump_conflicts conflicts in
let _ = dump_perms perms in
()
in
let pairs = analyse_liveness instrs in
let conflicts = calc_conflicts pairs in
let possible = possible_regs p_by_arg instrs in
let vars = collect_all_vars instrs in
let perms = all_assignments vars possible conflicts in
let _ = dump vars possible conflicts perms top_preserved pairs in
let f_assign, s_pairs = satisfy perms pairs in
let _ = dump_satisfied vars f_assign s_pairs in
s_pairs
in
(* depth = 0 *)
assign_regs 0