forked from mthom/scryer-prolog
-
Notifications
You must be signed in to change notification settings - Fork 0
/
xpath.pl
663 lines (587 loc) · 20 KB
/
xpath.pl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
The original copyright and licence information is shown below.
Adapted in June 2020 by Markus Triska (triska@metalevel.at)
Part of Scryer Prolog.
In order to improve portability and reliability of this library, I
have changed various parts of the original code to make it
conforming to the Prolog ISO standard. I have removed all
occurrences of proprietary non-standard ad hoc data types.
In Scryer Prolog, we represent strings as lists of characters.
This makes them amenable to processing with DCGs and other
built-in mechanisms such as existing predicates on lists.
Scryer Prolog represents lists of characters very compactly,
making it an ideal representation for large amounts of text. It
fully conforms to the ISO standard and is very portable.
This library is intended to be used in tandem with load_html/3
from library(sgml), which creates DOM trees from markup documents.
It can be combined with http_open/3 from library(http/http_open)
to read such documents directly from network connections.
For instance, to inspect all links to Prolog files (*.pl) on
Scryer Prolog's project page, we can use:
:- use_module(library(http/http_open)).
:- use_module(library(sgml)).
:- use_module(library(xpath)).
:- use_module(library(dcgs)).
link_to_pl_file(File) :-
http_open("https://github.com/mthom/scryer-prolog", S, []),
load_html(stream(S), DOM, []),
xpath(DOM, //a(@href), File),
phrase((...,".pl"), File).
Yielding:
?- link_to_pl_file(File).
%@ File = "/mthom/scryer-prolog/blob/master/src/lib/dcgs.pl"
%@ ; File = "/mthom/scryer-prolog/blob/master/src/lib/pio.pl"
%@ ; File = "/mthom/scryer-prolog/blob/master/src/lib/tabling.pl"
%@ ; ... .
Parts of the original functionality may not yet work. Please
consider such parts opportunities for improvements, and file
issues in case you need additional features.
The original copyright information follows.
======================================================================
Author: Jan Wielemaker
E-mail: J.Wielemaker@vu.nl
WWW: http://www.swi-prolog.org
Copyright (c) 2009-2019, University of Amsterdam
VU University Amsterdam
CWI, Amsterdam
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in
the documentation and/or other materials provided with the
distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
:- module(xpath,
[ xpath/3, % +DOM, +Spec, -Value
xpath_chk/3, % +DOM, +Spec, -Value
op(400, fx, //),
op(400, fx, /),
op(200, fy, @)
]).
:- use_module(library(lists),[member/2,memberchk/2,reverse/2]).
:- use_module(library(charsio)).
:- use_module(library(error)).
:- use_module(library(dcgs)).
:- use_module(library(si)).
/** Select nodes in an XML DOM
The library xpath.pl provides predicates to select nodes from an XML DOM
tree as produced by `library(sgml)` based on descriptions inspired by the
[XPath language](http://www.w3.org/TR/xpath).
The predicate `xpath/3` selects a sub-structure of the DOM
non-deterministically based on an XPath-like specification. Not all
selectors of XPath are implemented, but the ability to mix `xpath/3` calls
with arbitrary Prolog code provides a powerful tool for extracting
information from XML parse-trees.
*/
element_name(element(Name,_,_), Name).
element_attributes(element(_,Attributes,_), Attributes).
element_content(element(_,_,Content), Content).
%% xpath_chk(+DOM, +Spec, ?Content) is semidet.
%
% Semi-deterministic version of `xpath/3`.
xpath_chk(DOM, Spec, Content) :-
xpath(DOM, Spec, Content),
!.
%% xpath(+DOM, +Spec, ?Content) is nondet.
%
% Match an element in a DOM structure. The syntax is inspired by
% XPath, using () rather than [] to select inside an element.
% First we can construct paths using / and //:
%
% - *//Term*
% Select any node in the DOM matching term.
%
% - */Term*
% Match the root against Term.
%
% - *Term*
% Select the immediate children of the root matching Term.
%
% The Terms above are of type _callable_. The functor specifies
% the element name. The element name `*` refers to any element.
% The name _self_ refers to the top-element itself and is often
% used for processing matches of an earlier `xpath/3` query. A term
% NS:Term refers to an XML name in the namespace NS. Optional
% arguments specify additional constraints and functions. The
% arguments are processed from left to right. Defined conditional
% argument values are:
%
% - *`index(?Index)`*
% True if the element is the Index-th child of its parent,
% where 1 denotes the first child. Index can be one of:
%
% - *`Var`*
% `Var` is unified with the index of the matched element.
% - *`last`*
% True for the last element.
% - *`last - IntExpr`*
% True for the last-minus-nth element. For example,
% `last-1` is the element directly preceding the last one.
% - *`IntExpr`*
% True for the element whose index equals `IntExpr`.
% - *`Integer`*
% The N-th element with the given name, with 1 denoting the
% first element. Same as `index(Integer)`.
% - *`last`*
% The last element with the given name. Same as
% `index(last)`.
% - *`last - IntExpr`*
% The IntExpr-th element before the last.
% Same as `index(last-IntExpr)`.
%
% Defined function argument values are:
%
% - *`self`*
% Evaluate to the entire element
% - *`content`*
% Evaluate to the content of the element (a list)
% - *`text`*
% Evaluates to all text from the sub-tree, represented
% as a list of characters.
% - *`text(atom)`*
% Evaluates to all text from the sub-tree as an atom.
% - *`normalize_space`*
% As `text`, but uses `normalize_space/2` to normalise
% white-space in the output
% - *`number`*
% Extract an integer or float from the value. Ignores
% leading and trailing white-space
% - *`@Attribute`*
% Evaluates to the value of the given attribute. Attribute
% can be a compound term. In this case the functor name
% denotes the element and arguments perform transformations
% on the attribute value. Defined transformations are:
%
% - *`number`*
% Translate the value into a number using
% `xsd_number_chars/2`.
% - *`integer`*
% As `number`, but subsequently transform the value
% into an integer using the `round/1` function.
% - *`float`*
% As `number`, but subsequently transform the value
% into a float using the `float/1` function.
% - *`lower`*
% Translate the value to lower case, preserving
% the type.
% - *`upper`*
% Translate the value to upper case, preserving
% the type.
%
% In addition, the argument-list can be _conditions_:
%
% - *`Left = Right`*
% Succeeds if the left-hand unifies with the right-hand.
% If the left-hand side is a function, this is evaluated.
% The right-hand side is _never_ evaluated, and thus the
% condition `content = content` defines that the content
% of the element is the atom `content`.
% The functions `lower_case` and `upper_case` can be applied
% to Right (see example below).
% - *`contains(Haystack, Needle)`*
% Succeeds if Needle is a sub-list of Haystack.
% - *`XPath`*
% Succeeds if XPath matches in the currently selected
% sub-DOM. For example, the following expression finds
% an `h3` element inside a `div` element, where the `div`
% element itself contains an `h2` child with a `strong`
% child.
%
% ```
% //div(h2/strong)/h3
% ```
%
% This is equivalent to the conjunction of XPath goals below.
%
% ```
% ...,
% xpath(DOM, //(div), Div),
% xpath(Div, h2/strong, _),
% xpath(Div, h3, Result)
% ```
%
% #### Examples
%
% Match each table-row in DOM:
%
% ```
% xpath(DOM, //tr, TR)
% ```
%
% Match the last cell of each tablerow in DOM. This example
% illustrates that a result can be the input of subsequent `xpath/3`
% queries. Using multiple queries on the intermediate TR term
% guarantee that all results come from the same table-row:
%
% ```
% xpath(DOM, //tr, TR),
% xpath(TR, /td(last), TD)
% ```
%
% Match each `href` attribute in an `<a>` element
%
% ```
% xpath(DOM, //a(@href), HREF)
% ```
%
% Suppose we have a table containing rows where each first column
% is the name of a product with a link to details and the second
% is the price (a number). The following predicate matches the
% name, URL and price:
%
% ```
% product(DOM, Name, URL, Price) :-
% xpath(DOM, //tr, TR),
% xpath(TR, td(1), C1),
% xpath(C1, /self(normalize_space), Name),
% xpath(C1, a(@href), URL),
% xpath(TR, td(2, number), Price).
% ```
%
% Suppose we want to select books with genre="thriller" from a
% tree containing elements `<book genre=...>`
%
% ```
% thriller(DOM, Book) :-
% xpath(DOM, //book(@genre=thiller), Book).
% ```
%
% Match the elements `<table align="center">` _and_ `<table
% align="CENTER">`:
%
% ```
% //table(@align(lower) = center)
% ```
%
% Get the `width` and `height` of a `div` element as a number,
% and the `div` node itself:
%
% ```
% xpath(DOM, //div(@width(number)=W, @height(number)=H), Div)
% ```
%
% Note that `div` is an infix operator, so parentheses must be
% used in cases like the following:
%
% ```
% xpath(DOM, //(div), Div)
% ```
xpath(DOM, Spec, Content) :-
in_dom(Spec, DOM, Content).
in_dom(//Spec, DOM, Value) :-
!,
element_spec(Spec, Name, Modifiers),
sub_dom(I, Len, Name, E, DOM),
modifiers(Modifiers, I, Len, E, Value).
in_dom(/Spec, E, Value) :-
!,
element_spec(Spec, Name, Modifiers),
( Name == self
-> true
; element_name(E, Name)
),
modifiers(Modifiers, 1, 1, E, Value).
in_dom(A/B, DOM, Value) :-
!,
in_dom(A, DOM, Value0),
in_dom(B, Value0, Value).
in_dom(A//B, DOM, Value) :-
!,
in_dom(A, DOM, Value0),
in_dom(//B, Value0, Value).
in_dom(Spec, element(_, _, Content), Value) :-
element_spec(Spec, Name, Modifiers),
count_named_elements(Content, Name, CLen),
CLen > 0,
nth_element(N, Name, E, Content),
modifiers(Modifiers, N, CLen, E, Value).
element_spec(Var, _, _) :-
var(Var),
!,
instantiation_error(Var).
element_spec(NS:Term, NS:Name, Modifiers) :-
!,
callable_name_arguments(Term, Name0, Modifiers),
star(Name0, Name).
element_spec(Term, Name, Modifiers) :-
!,
callable_name_arguments(Term, Name0, Modifiers),
star(Name0, Name).
callable_name_arguments(Atom, Name, Arguments) :-
atom(Atom),
!,
Name = Atom, Arguments = [].
callable_name_arguments(Compound, Name, Arguments) :-
Compound =.. [Name|Arguments].
star(*, _) :- !.
star(Name, Name).
%! sub_dom(-Index, -Count, +Name, -Sub, +DOM) is nondet.
%
% Sub is a node in DOM with Name.
%
% @param Count is the total number of nodes in the content
% list Sub appears that have the same name.
% @param Index is the 1-based index of Sub of nodes with
% Name.
sub_dom(1, 1, Name, DOM, DOM) :-
element_name(DOM, Name0),
\+ Name \= Name0.
sub_dom(N, Len, Name, E, element(_,_,Content)) :-
!,
sub_dom_2(N, Len, Name, E, Content).
sub_dom(N, Len, Name, E, Content) :-
list_si(Content),
sub_dom_2(N, Len, Name, E, Content).
sub_dom_2(N, Len, Name, Element, Content) :-
( count_named_elements(Content, Name, Len),
nth_element(N, Name, Element, Content)
; member(element(_,_,C2), Content),
sub_dom_2(N, Len, Name, Element, C2)
).
%! count_named_elements(+Content, +Name, -Count) is det.
%
% Count is the number of nodes with Name in Content.
count_named_elements(Content, Name, Count) :-
count_named_elements(Content, Name, 0, Count).
count_named_elements([], _, Count, Count).
count_named_elements([element(Name,_,_)|T], Name0, C0, C) :-
\+ Name \= Name0,
!,
C1 is C0+1,
count_named_elements(T, Name0, C1, C).
count_named_elements([_|T], Name, C0, C) :-
count_named_elements(T, Name, C0, C).
%! nth_element(?N, +Name, -Element, +Content:list) is nondet.
%
% True if Element is the N-th element with name in Content.
nth_element(N, Name, Element, Content) :-
nth_element_(1, N, Name, Element, Content).
nth_element_(I, N, Name, E, [H|T]) :-
element_name(H, Name0),
\+ Name \= Name0,
!,
( N = I,
E = H
; I2 is I + 1,
( nonvar(N), I2 > N
-> !, fail
; true
),
nth_element_(I2, N, Name, E, T)
).
nth_element_(I, N, Name, E, [_|T]) :-
nth_element_(I, N, Name, E, T).
%! modifiers(+Modifiers, +I, +Clen, +DOM, -Value)
%
%
modifiers([], _, _, Value, Value).
modifiers([H|T], I, L, Value0, Value) :-
modifier(H, I, L, Value0, Value1),
modifiers(T, I, L, Value1, Value).
modifier(M, _, _, _, _) :-
var(M),
!,
instantiation_error(M).
modifier(Index, I, L, Value0, Value) :-
implicit_index_modifier(Index),
!,
Value = Value0,
index_modifier(Index, I, L).
modifier(index(Index), I, L, Value, Value) :-
!,
index_modifier(Index, I, L).
modifier(Function, _, _, In, Out) :-
xpath_function(Function),
!,
xpath_function(Function, In, Out).
modifier(Function, _, _, In, Out) :-
xpath_condition(Function, In),
Out = In.
implicit_index_modifier(I) :-
integer(I),
!.
implicit_index_modifier(last).
implicit_index_modifier(last-_Expr).
index_modifier(Var, I, _L) :-
var(Var),
!,
Var = I.
index_modifier(last, I, L) :-
!,
I =:= L.
index_modifier(last-Expr, I, L) :-
!,
I =:= L-Expr.
index_modifier(N, I, _) :-
N =:= I.
xpath_function(self, DOM, DOM). % self
xpath_function(content, Element, Value) :- % content
element_content(Element, Value).
xpath_function(text, DOM, Text) :- % text
text_of_dom(DOM, chars, Text).
xpath_function(text(As), DOM, Text) :- % text(atom)
text_of_dom(DOM, As, Text).
xpath_function(normalize_space, DOM, Text) :- % normalize_space
text_of_dom(DOM, chars, Text0),
normalize_space(Text0, Text).
xpath_function(number, DOM, Number) :- % number
text_of_dom(DOM, chars, Text0),
normalize_space(Text0, Text),
catch(xsd_number_chars(Number, Text), _, fail).
xpath_function(@Name, element(_, Attrs, _), Value) :- % @Name
( atom(Name)
-> memberchk(Name=Value, Attrs)
; compound(Name)
-> Name =.. [AName|AOps],
memberchk(AName=Value0, Attrs),
translate_attribute(AOps, Value0, Value)
; member(Name=Value, Attrs)
).
xpath_function(quote(Value), _, Value). % quote(Value)
xpath_function(self).
xpath_function(content).
xpath_function(text).
xpath_function(text(_)).
xpath_function(normalize_space).
xpath_function(number).
xpath_function(@_).
xpath_function(quote(_)).
translate_attribute([], Value, Value).
translate_attribute([H|T], Value0, Value) :-
translate_attr(H, Value0, Value1),
translate_attribute(T, Value1, Value).
translate_attr(number, Value0, Value) :-
xsd_number_chars(Value, Value0).
translate_attr(integer, Value0, Value) :-
xsd_number_chars(Value1, Value0),
Value is round(Value1).
translate_attr(float, Value0, Value) :-
xsd_number_chars(Value1, Value0),
Value is float(Value1).
% The implementation of these translations is left for later.
% translate_attr(lower, Value0, Value) :- ...
% translate_attr(upper, Value0, Value) :- ...
xpath_condition(Left = Right, Value) :- % =
!,
var_or_function(Left, Value, LeftValue),
process_equality(LeftValue, Right).
xpath_condition(contains(Haystack, Needle), Value) :- % contains(Haystack, Needle)
!,
val_or_function(Haystack, Value, HaystackValue),
val_or_function(Needle, Value, NeedleValue),
( phrase((...,seq(NeedleValue),...), HaystackValue)
-> true
).
xpath_condition(Spec, Dom) :-
in_dom(Spec, Dom, _).
%! process_equality(+Left, +Right) is semidet.
%
% Provides (very) partial support for XSLT functions that can be
% applied according to the XPath 2 specification.
%
% For example the XPath expression in [1], and the equivalent
% Prolog expression in [2], would both match the HTML element in
% [3].
%
% ==
% [1] //table[align=lower-case(center)]
% [2] //table(@align=lower_case(center))
% [3] <table align="CENTER">
% ==
process_equality(Left, Right) :-
var(Right),
!,
Left = Right.
process_equality(Left, lower_case(Right)) :-
!,
downcase_atom(Left, Right).
process_equality(Left, upper_case(Right)) :-
!,
upcase_atom(Left, Right).
process_equality(Left, Right) :-
Left = Right.
var_or_function(Arg, _, Arg) :-
var(Arg),
!.
var_or_function(Func, Value0, Value) :-
xpath_function(Func),
!,
xpath_function(Func, Value0, Value).
var_or_function(Value, _, Value).
val_or_function(Arg, _, Arg) :-
var(Arg),
!,
instantiation_error(Arg).
val_or_function(Func, Value0, Value) :- % TBD
xpath_function(Func, Value0, Value),
!.
val_or_function(Value, _, Value).
%! text_of_dom(+DOM, +As, -Text:(chars | atom)) is det.
%
% Text is the joined textual content of DOM.
text_of_dom(DOM, As, Text) :-
phrase(text_of(DOM), Text0),
( As == chars ->
Text = Text0
; As == atom ->
atom_chars(Text, Text0)
; domain_error(As, atom_or_chars, xpath)
).
text_of(element(_,_,Content)) -->
text_of_list(Content).
text_of([]) -->
[].
text_of([H|T]) -->
text_of(H),
text_of(T).
text_of_list([]) -->
[].
text_of_list([H|T]) -->
text_of_1(H),
text_of_list(T).
text_of_1(element(_,_,Content)) -->
text_of_list(Content).
text_of_1([C|Cs]) --> seq([C|Cs]).
% For now, we use number_chars/2 to parse XML numbers.
% If the need arises, we can extend this to additional
% float constants and syntax that may occur in XML files.
xsd_number_chars(Number, Chars) :-
number_chars(Number, Chars).
normalize_space(Cs0, Cs) :-
must_be(chars, Cs0),
no_leading_whitespace(Cs0, Cs1),
reverse(Cs1, Cs2),
no_leading_whitespace(Cs2, Cs3),
reverse(Cs3, Cs4),
single_intermediate_space(Cs4, Cs).
no_leading_whitespace([], []).
no_leading_whitespace([C0|Cs0], Cs) :-
( char_type(C0, whitespace) ->
no_leading_whitespace(Cs0, Cs)
; Cs = [C0|Cs0]
).
single_intermediate_space([], []).
single_intermediate_space([C0|Cs0], [C|Cs]) :-
( char_type(C0, whitespace) ->
no_leading_whitespace(Cs0, Cs1),
C = ' ',
single_intermediate_space(Cs1, Cs)
; C = C0,
single_intermediate_space(Cs0, Cs)
).