-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
/
Copy pathtest_indexing.py
420 lines (339 loc) · 14.6 KB
/
test_indexing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import numpy as np
import pytest
from pandas.errors import InvalidIndexError
import pandas as pd
from pandas import (
CategoricalIndex,
Index,
IntervalIndex,
Timestamp,
)
import pandas._testing as tm
class TestTake:
def test_take_fill_value(self):
# GH 12631
# numeric category
idx = CategoricalIndex([1, 2, 3], name="xxx")
result = idx.take(np.array([1, 0, -1]))
expected = CategoricalIndex([2, 1, 3], name="xxx")
tm.assert_index_equal(result, expected)
tm.assert_categorical_equal(result.values, expected.values)
# fill_value
result = idx.take(np.array([1, 0, -1]), fill_value=True)
expected = CategoricalIndex([2, 1, np.nan], categories=[1, 2, 3], name="xxx")
tm.assert_index_equal(result, expected)
tm.assert_categorical_equal(result.values, expected.values)
# allow_fill=False
result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
expected = CategoricalIndex([2, 1, 3], name="xxx")
tm.assert_index_equal(result, expected)
tm.assert_categorical_equal(result.values, expected.values)
# object category
idx = CategoricalIndex(
list("CBA"), categories=list("ABC"), ordered=True, name="xxx"
)
result = idx.take(np.array([1, 0, -1]))
expected = CategoricalIndex(
list("BCA"), categories=list("ABC"), ordered=True, name="xxx"
)
tm.assert_index_equal(result, expected)
tm.assert_categorical_equal(result.values, expected.values)
# fill_value
result = idx.take(np.array([1, 0, -1]), fill_value=True)
expected = CategoricalIndex(
["B", "C", np.nan], categories=list("ABC"), ordered=True, name="xxx"
)
tm.assert_index_equal(result, expected)
tm.assert_categorical_equal(result.values, expected.values)
# allow_fill=False
result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
expected = CategoricalIndex(
list("BCA"), categories=list("ABC"), ordered=True, name="xxx"
)
tm.assert_index_equal(result, expected)
tm.assert_categorical_equal(result.values, expected.values)
msg = (
"When allow_fill=True and fill_value is not None, "
"all indices must be >= -1"
)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -2]), fill_value=True)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -5]), fill_value=True)
msg = "index -5 is out of bounds for (axis 0 with )?size 3"
with pytest.raises(IndexError, match=msg):
idx.take(np.array([1, -5]))
def test_take_fill_value_datetime(self):
# datetime category
idx = pd.DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"], name="xxx")
idx = CategoricalIndex(idx)
result = idx.take(np.array([1, 0, -1]))
expected = pd.DatetimeIndex(
["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx"
)
expected = CategoricalIndex(expected)
tm.assert_index_equal(result, expected)
# fill_value
result = idx.take(np.array([1, 0, -1]), fill_value=True)
expected = pd.DatetimeIndex(["2011-02-01", "2011-01-01", "NaT"], name="xxx")
exp_cats = pd.DatetimeIndex(["2011-01-01", "2011-02-01", "2011-03-01"])
expected = CategoricalIndex(expected, categories=exp_cats)
tm.assert_index_equal(result, expected)
# allow_fill=False
result = idx.take(np.array([1, 0, -1]), allow_fill=False, fill_value=True)
expected = pd.DatetimeIndex(
["2011-02-01", "2011-01-01", "2011-03-01"], name="xxx"
)
expected = CategoricalIndex(expected)
tm.assert_index_equal(result, expected)
msg = (
"When allow_fill=True and fill_value is not None, "
"all indices must be >= -1"
)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -2]), fill_value=True)
with pytest.raises(ValueError, match=msg):
idx.take(np.array([1, 0, -5]), fill_value=True)
msg = "index -5 is out of bounds for (axis 0 with )?size 3"
with pytest.raises(IndexError, match=msg):
idx.take(np.array([1, -5]))
def test_take_invalid_kwargs(self):
idx = CategoricalIndex([1, 2, 3], name="foo")
indices = [1, 0, -1]
msg = r"take\(\) got an unexpected keyword argument 'foo'"
with pytest.raises(TypeError, match=msg):
idx.take(indices, foo=2)
msg = "the 'out' parameter is not supported"
with pytest.raises(ValueError, match=msg):
idx.take(indices, out=indices)
msg = "the 'mode' parameter is not supported"
with pytest.raises(ValueError, match=msg):
idx.take(indices, mode="clip")
class TestGetLoc:
def test_get_loc(self):
# GH 12531
cidx1 = CategoricalIndex(list("abcde"), categories=list("edabc"))
idx1 = Index(list("abcde"))
assert cidx1.get_loc("a") == idx1.get_loc("a")
assert cidx1.get_loc("e") == idx1.get_loc("e")
for i in [cidx1, idx1]:
with pytest.raises(KeyError, match="'NOT-EXIST'"):
i.get_loc("NOT-EXIST")
# non-unique
cidx2 = CategoricalIndex(list("aacded"), categories=list("edabc"))
idx2 = Index(list("aacded"))
# results in bool array
res = cidx2.get_loc("d")
tm.assert_numpy_array_equal(res, idx2.get_loc("d"))
tm.assert_numpy_array_equal(
res, np.array([False, False, False, True, False, True])
)
# unique element results in scalar
res = cidx2.get_loc("e")
assert res == idx2.get_loc("e")
assert res == 4
for i in [cidx2, idx2]:
with pytest.raises(KeyError, match="'NOT-EXIST'"):
i.get_loc("NOT-EXIST")
# non-unique, sliceable
cidx3 = CategoricalIndex(list("aabbb"), categories=list("abc"))
idx3 = Index(list("aabbb"))
# results in slice
res = cidx3.get_loc("a")
assert res == idx3.get_loc("a")
assert res == slice(0, 2, None)
res = cidx3.get_loc("b")
assert res == idx3.get_loc("b")
assert res == slice(2, 5, None)
for i in [cidx3, idx3]:
with pytest.raises(KeyError, match="'c'"):
i.get_loc("c")
def test_get_loc_unique(self):
cidx = CategoricalIndex(list("abc"))
result = cidx.get_loc("b")
assert result == 1
def test_get_loc_monotonic_nonunique(self):
cidx = CategoricalIndex(list("abbc"))
result = cidx.get_loc("b")
expected = slice(1, 3, None)
assert result == expected
def test_get_loc_nonmonotonic_nonunique(self):
cidx = CategoricalIndex(list("abcb"))
result = cidx.get_loc("b")
expected = np.array([False, True, False, True], dtype=bool)
tm.assert_numpy_array_equal(result, expected)
def test_get_loc_nan(self):
# GH#41933
ci = CategoricalIndex(["A", "B", np.nan])
res = ci.get_loc(np.nan)
assert res == 2
class TestGetIndexer:
def test_get_indexer_base(self):
# Determined by cat ordering.
idx = CategoricalIndex(list("cab"), categories=list("cab"))
expected = np.arange(len(idx), dtype=np.intp)
actual = idx.get_indexer(idx)
tm.assert_numpy_array_equal(expected, actual)
with pytest.raises(ValueError, match="Invalid fill method"):
idx.get_indexer(idx, method="invalid")
def test_get_indexer_requires_unique(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
oidx = Index(np.array(ci))
msg = "Reindexing only valid with uniquely valued Index objects"
for n in [1, 2, 5, len(ci)]:
finder = oidx[np.random.default_rng(2).integers(0, len(ci), size=n)]
with pytest.raises(InvalidIndexError, match=msg):
ci.get_indexer(finder)
# see gh-17323
#
# Even when indexer is equal to the
# members in the index, we should
# respect duplicates instead of taking
# the fast-track path.
for finder in [list("aabbca"), list("aababca")]:
with pytest.raises(InvalidIndexError, match=msg):
ci.get_indexer(finder)
def test_get_indexer_non_unique(self):
idx1 = CategoricalIndex(list("aabcde"), categories=list("edabc"))
idx2 = CategoricalIndex(list("abf"))
for indexer in [idx2, list("abf"), Index(list("abf"))]:
msg = "Reindexing only valid with uniquely valued Index objects"
with pytest.raises(InvalidIndexError, match=msg):
idx1.get_indexer(indexer)
r1, _ = idx1.get_indexer_non_unique(indexer)
expected = np.array([0, 1, 2, -1], dtype=np.intp)
tm.assert_almost_equal(r1, expected)
def test_get_indexer_method(self):
idx1 = CategoricalIndex(list("aabcde"), categories=list("edabc"))
idx2 = CategoricalIndex(list("abf"))
msg = "method pad not yet implemented for CategoricalIndex"
with pytest.raises(NotImplementedError, match=msg):
idx2.get_indexer(idx1, method="pad")
msg = "method backfill not yet implemented for CategoricalIndex"
with pytest.raises(NotImplementedError, match=msg):
idx2.get_indexer(idx1, method="backfill")
msg = "method nearest not yet implemented for CategoricalIndex"
with pytest.raises(NotImplementedError, match=msg):
idx2.get_indexer(idx1, method="nearest")
def test_get_indexer_array(self):
arr = np.array(
[Timestamp("1999-12-31 00:00:00"), Timestamp("2000-12-31 00:00:00")],
dtype=object,
)
cats = [Timestamp("1999-12-31 00:00:00"), Timestamp("2000-12-31 00:00:00")]
ci = CategoricalIndex(cats, categories=cats, ordered=False, dtype="category")
result = ci.get_indexer(arr)
expected = np.array([0, 1], dtype="intp")
tm.assert_numpy_array_equal(result, expected)
def test_get_indexer_same_categories_same_order(self):
ci = CategoricalIndex(["a", "b"], categories=["a", "b"])
result = ci.get_indexer(CategoricalIndex(["b", "b"], categories=["a", "b"]))
expected = np.array([1, 1], dtype="intp")
tm.assert_numpy_array_equal(result, expected)
def test_get_indexer_same_categories_different_order(self):
# https://github.com/pandas-dev/pandas/issues/19551
ci = CategoricalIndex(["a", "b"], categories=["a", "b"])
result = ci.get_indexer(CategoricalIndex(["b", "b"], categories=["b", "a"]))
expected = np.array([1, 1], dtype="intp")
tm.assert_numpy_array_equal(result, expected)
def test_get_indexer_nans_in_index_and_target(self):
# GH 45361
ci = CategoricalIndex([1, 2, np.nan, 3])
other1 = [2, 3, 4, np.nan]
res1 = ci.get_indexer(other1)
expected1 = np.array([1, 3, -1, 2], dtype=np.intp)
tm.assert_numpy_array_equal(res1, expected1)
other2 = [1, 4, 2, 3]
res2 = ci.get_indexer(other2)
expected2 = np.array([0, -1, 1, 3], dtype=np.intp)
tm.assert_numpy_array_equal(res2, expected2)
class TestWhere:
def test_where(self, listlike_box):
klass = listlike_box
i = CategoricalIndex(list("aabbca"), categories=list("cab"), ordered=False)
cond = [True] * len(i)
expected = i
result = i.where(klass(cond))
tm.assert_index_equal(result, expected)
cond = [False] + [True] * (len(i) - 1)
expected = CategoricalIndex([np.nan] + i[1:].tolist(), categories=i.categories)
result = i.where(klass(cond))
tm.assert_index_equal(result, expected)
def test_where_non_categories(self):
ci = CategoricalIndex(["a", "b", "c", "d"])
mask = np.array([True, False, True, False])
result = ci.where(mask, 2)
expected = Index(["a", 2, "c", 2], dtype=object)
tm.assert_index_equal(result, expected)
msg = "Cannot setitem on a Categorical with a new category"
with pytest.raises(TypeError, match=msg):
# Test the Categorical method directly
ci._data._where(mask, 2)
class TestContains:
def test_contains(self):
ci = CategoricalIndex(list("aabbca"), categories=list("cabdef"), ordered=False)
assert "a" in ci
assert "z" not in ci
assert "e" not in ci
assert np.nan not in ci
# assert codes NOT in index
assert 0 not in ci
assert 1 not in ci
def test_contains_nan(self):
ci = CategoricalIndex(list("aabbca") + [np.nan], categories=list("cabdef"))
assert np.nan in ci
@pytest.mark.parametrize("unwrap", [True, False])
def test_contains_na_dtype(self, unwrap):
dti = pd.date_range("2016-01-01", periods=100).insert(0, pd.NaT)
pi = dti.to_period("D")
tdi = dti - dti[-1]
ci = CategoricalIndex(dti)
obj = ci
if unwrap:
obj = ci._data
assert np.nan in obj
assert None in obj
assert pd.NaT in obj
assert np.datetime64("NaT") in obj
assert np.timedelta64("NaT") not in obj
obj2 = CategoricalIndex(tdi)
if unwrap:
obj2 = obj2._data
assert np.nan in obj2
assert None in obj2
assert pd.NaT in obj2
assert np.datetime64("NaT") not in obj2
assert np.timedelta64("NaT") in obj2
obj3 = CategoricalIndex(pi)
if unwrap:
obj3 = obj3._data
assert np.nan in obj3
assert None in obj3
assert pd.NaT in obj3
assert np.datetime64("NaT") not in obj3
assert np.timedelta64("NaT") not in obj3
@pytest.mark.parametrize(
"item, expected",
[
(pd.Interval(0, 1), True),
(1.5, True),
(pd.Interval(0.5, 1.5), False),
("a", False),
(Timestamp(1), False),
(pd.Timedelta(1), False),
],
ids=str,
)
def test_contains_interval(self, item, expected):
# GH 23705
ci = CategoricalIndex(IntervalIndex.from_breaks(range(3)))
result = item in ci
assert result is expected
def test_contains_list(self):
# GH#21729
idx = CategoricalIndex([1, 2, 3])
assert "a" not in idx
with pytest.raises(TypeError, match="unhashable type"):
["a"] in idx
with pytest.raises(TypeError, match="unhashable type"):
["a", "b"] in idx