-
-
Notifications
You must be signed in to change notification settings - Fork 18.2k
/
Copy pathstring_arrow.py
687 lines (575 loc) · 23 KB
/
string_arrow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
from __future__ import annotations
from functools import partial
import re
from typing import (
TYPE_CHECKING,
Callable,
Union,
)
import warnings
import numpy as np
from pandas._libs import (
lib,
missing as libmissing,
)
from pandas.compat import (
pa_version_under10p1,
pa_version_under13p0,
)
from pandas.util._exceptions import find_stack_level
from pandas.core.dtypes.common import (
is_bool_dtype,
is_integer_dtype,
is_object_dtype,
is_scalar,
is_string_dtype,
pandas_dtype,
)
from pandas.core.dtypes.missing import isna
from pandas.core.arrays._arrow_string_mixins import ArrowStringArrayMixin
from pandas.core.arrays.arrow import ArrowExtensionArray
from pandas.core.arrays.boolean import BooleanDtype
from pandas.core.arrays.integer import Int64Dtype
from pandas.core.arrays.numeric import NumericDtype
from pandas.core.arrays.string_ import (
BaseStringArray,
StringDtype,
)
from pandas.core.strings.object_array import ObjectStringArrayMixin
if not pa_version_under10p1:
import pyarrow as pa
import pyarrow.compute as pc
from pandas.core.arrays.arrow._arrow_utils import fallback_performancewarning
if TYPE_CHECKING:
from collections.abc import Sequence
from pandas._typing import (
AxisInt,
Dtype,
Scalar,
npt,
)
from pandas import Series
ArrowStringScalarOrNAT = Union[str, libmissing.NAType]
def _chk_pyarrow_available() -> None:
if pa_version_under10p1:
msg = "pyarrow>=10.0.1 is required for PyArrow backed ArrowExtensionArray."
raise ImportError(msg)
# TODO: Inherit directly from BaseStringArrayMethods. Currently we inherit from
# ObjectStringArrayMixin because we want to have the object-dtype based methods as
# fallback for the ones that pyarrow doesn't yet support
class ArrowStringArray(ObjectStringArrayMixin, ArrowExtensionArray, BaseStringArray):
"""
Extension array for string data in a ``pyarrow.ChunkedArray``.
.. versionadded:: 1.2.0
.. warning::
ArrowStringArray is considered experimental. The implementation and
parts of the API may change without warning.
Parameters
----------
values : pyarrow.Array or pyarrow.ChunkedArray
The array of data.
Attributes
----------
None
Methods
-------
None
See Also
--------
:func:`pandas.array`
The recommended function for creating a ArrowStringArray.
Series.str
The string methods are available on Series backed by
a ArrowStringArray.
Notes
-----
ArrowStringArray returns a BooleanArray for comparison methods.
Examples
--------
>>> pd.array(['This is', 'some text', None, 'data.'], dtype="string[pyarrow]")
<ArrowStringArray>
['This is', 'some text', <NA>, 'data.']
Length: 4, dtype: string
"""
# error: Incompatible types in assignment (expression has type "StringDtype",
# base class "ArrowExtensionArray" defined the type as "ArrowDtype")
_dtype: StringDtype # type: ignore[assignment]
_storage = "pyarrow"
def __init__(self, values) -> None:
super().__init__(values)
self._dtype = StringDtype(storage=self._storage)
if not pa.types.is_string(self._pa_array.type) and not (
pa.types.is_dictionary(self._pa_array.type)
and pa.types.is_string(self._pa_array.type.value_type)
):
raise ValueError(
"ArrowStringArray requires a PyArrow (chunked) array of string type"
)
def __len__(self) -> int:
"""
Length of this array.
Returns
-------
length : int
"""
return len(self._pa_array)
@classmethod
def _from_sequence(cls, scalars, dtype: Dtype | None = None, copy: bool = False):
from pandas.core.arrays.masked import BaseMaskedArray
_chk_pyarrow_available()
if dtype and not (isinstance(dtype, str) and dtype == "string"):
dtype = pandas_dtype(dtype)
assert isinstance(dtype, StringDtype) and dtype.storage in (
"pyarrow",
"pyarrow_numpy",
)
if isinstance(scalars, BaseMaskedArray):
# avoid costly conversion to object dtype in ensure_string_array and
# numerical issues with Float32Dtype
na_values = scalars._mask
result = scalars._data
result = lib.ensure_string_array(result, copy=copy, convert_na_value=False)
return cls(pa.array(result, mask=na_values, type=pa.string()))
elif isinstance(scalars, (pa.Array, pa.ChunkedArray)):
return cls(pc.cast(scalars, pa.string()))
# convert non-na-likes to str
result = lib.ensure_string_array(scalars, copy=copy)
return cls(pa.array(result, type=pa.string(), from_pandas=True))
@classmethod
def _from_sequence_of_strings(
cls, strings, dtype: Dtype | None = None, copy: bool = False
):
return cls._from_sequence(strings, dtype=dtype, copy=copy)
@property
def dtype(self) -> StringDtype: # type: ignore[override]
"""
An instance of 'string[pyarrow]'.
"""
return self._dtype
def insert(self, loc: int, item) -> ArrowStringArray:
if not isinstance(item, str) and item is not libmissing.NA:
raise TypeError("Scalar must be NA or str")
return super().insert(loc, item)
@classmethod
def _result_converter(cls, values, na=None):
return BooleanDtype().__from_arrow__(values)
def _maybe_convert_setitem_value(self, value):
"""Maybe convert value to be pyarrow compatible."""
if is_scalar(value):
if isna(value):
value = None
elif not isinstance(value, str):
raise TypeError("Scalar must be NA or str")
else:
value = np.array(value, dtype=object, copy=True)
value[isna(value)] = None
for v in value:
if not (v is None or isinstance(v, str)):
raise TypeError("Scalar must be NA or str")
return super()._maybe_convert_setitem_value(value)
def isin(self, values) -> npt.NDArray[np.bool_]:
value_set = [
pa_scalar.as_py()
for pa_scalar in [pa.scalar(value, from_pandas=True) for value in values]
if pa_scalar.type in (pa.string(), pa.null())
]
# short-circuit to return all False array.
if not len(value_set):
return np.zeros(len(self), dtype=bool)
result = pc.is_in(
self._pa_array, value_set=pa.array(value_set, type=self._pa_array.type)
)
# pyarrow 2.0.0 returned nulls, so we explicily specify dtype to convert nulls
# to False
return np.array(result, dtype=np.bool_)
def astype(self, dtype, copy: bool = True):
dtype = pandas_dtype(dtype)
if dtype == self.dtype:
if copy:
return self.copy()
return self
elif isinstance(dtype, NumericDtype):
data = self._pa_array.cast(pa.from_numpy_dtype(dtype.numpy_dtype))
return dtype.__from_arrow__(data)
elif isinstance(dtype, np.dtype) and np.issubdtype(dtype, np.floating):
return self.to_numpy(dtype=dtype, na_value=np.nan)
return super().astype(dtype, copy=copy)
@property
def _data(self):
# dask accesses ._data directlys
warnings.warn(
f"{type(self).__name__}._data is a deprecated and will be removed "
"in a future version, use ._pa_array instead",
FutureWarning,
stacklevel=find_stack_level(),
)
return self._pa_array
# ------------------------------------------------------------------------
# String methods interface
# error: Incompatible types in assignment (expression has type "NAType",
# base class "ObjectStringArrayMixin" defined the type as "float")
_str_na_value = libmissing.NA # type: ignore[assignment]
def _str_map(
self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True
):
# TODO: de-duplicate with StringArray method. This method is moreless copy and
# paste.
from pandas.arrays import (
BooleanArray,
IntegerArray,
)
if dtype is None:
dtype = self.dtype
if na_value is None:
na_value = self.dtype.na_value
mask = isna(self)
arr = np.asarray(self)
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
constructor: type[IntegerArray | BooleanArray]
if is_integer_dtype(dtype):
constructor = IntegerArray
else:
constructor = BooleanArray
na_value_is_na = isna(na_value)
if na_value_is_na:
na_value = 1
result = lib.map_infer_mask(
arr,
f,
mask.view("uint8"),
convert=False,
na_value=na_value,
# error: Argument 1 to "dtype" has incompatible type
# "Union[ExtensionDtype, str, dtype[Any], Type[object]]"; expected
# "Type[object]"
dtype=np.dtype(dtype), # type: ignore[arg-type]
)
if not na_value_is_na:
mask[:] = False
return constructor(result, mask)
elif is_string_dtype(dtype) and not is_object_dtype(dtype):
# i.e. StringDtype
result = lib.map_infer_mask(
arr, f, mask.view("uint8"), convert=False, na_value=na_value
)
result = pa.array(result, mask=mask, type=pa.string(), from_pandas=True)
return type(self)(result)
else:
# This is when the result type is object. We reach this when
# -> We know the result type is truly object (e.g. .encode returns bytes
# or .findall returns a list).
# -> We don't know the result type. E.g. `.get` can return anything.
return lib.map_infer_mask(arr, f, mask.view("uint8"))
def _str_contains(
self, pat, case: bool = True, flags: int = 0, na=np.nan, regex: bool = True
):
if flags:
fallback_performancewarning()
return super()._str_contains(pat, case, flags, na, regex)
if regex:
result = pc.match_substring_regex(self._pa_array, pat, ignore_case=not case)
else:
result = pc.match_substring(self._pa_array, pat, ignore_case=not case)
result = self._result_converter(result, na=na)
if not isna(na):
result[isna(result)] = bool(na)
return result
def _str_startswith(self, pat: str | tuple[str, ...], na: Scalar | None = None):
if isinstance(pat, str):
result = pc.starts_with(self._pa_array, pattern=pat)
else:
if len(pat) == 0:
# mimic existing behaviour of string extension array
# and python string method
result = pa.array(
np.zeros(len(self._pa_array), dtype=bool), mask=isna(self._pa_array)
)
else:
result = pc.starts_with(self._pa_array, pattern=pat[0])
for p in pat[1:]:
result = pc.or_(result, pc.starts_with(self._pa_array, pattern=p))
if not isna(na):
result = result.fill_null(na)
return self._result_converter(result)
def _str_endswith(self, pat: str | tuple[str, ...], na: Scalar | None = None):
if isinstance(pat, str):
result = pc.ends_with(self._pa_array, pattern=pat)
else:
if len(pat) == 0:
# mimic existing behaviour of string extension array
# and python string method
result = pa.array(
np.zeros(len(self._pa_array), dtype=bool), mask=isna(self._pa_array)
)
else:
result = pc.ends_with(self._pa_array, pattern=pat[0])
for p in pat[1:]:
result = pc.or_(result, pc.ends_with(self._pa_array, pattern=p))
if not isna(na):
result = result.fill_null(na)
return self._result_converter(result)
def _str_replace(
self,
pat: str | re.Pattern,
repl: str | Callable,
n: int = -1,
case: bool = True,
flags: int = 0,
regex: bool = True,
):
if isinstance(pat, re.Pattern) or callable(repl) or not case or flags:
fallback_performancewarning()
return super()._str_replace(pat, repl, n, case, flags, regex)
func = pc.replace_substring_regex if regex else pc.replace_substring
result = func(self._pa_array, pattern=pat, replacement=repl, max_replacements=n)
return type(self)(result)
def _str_repeat(self, repeats: int | Sequence[int]):
if not isinstance(repeats, int):
return super()._str_repeat(repeats)
else:
return type(self)(pc.binary_repeat(self._pa_array, repeats))
def _str_match(
self, pat: str, case: bool = True, flags: int = 0, na: Scalar | None = None
):
if not pat.startswith("^"):
pat = f"^{pat}"
return self._str_contains(pat, case, flags, na, regex=True)
def _str_fullmatch(
self, pat, case: bool = True, flags: int = 0, na: Scalar | None = None
):
if not pat.endswith("$") or pat.endswith("//$"):
pat = f"{pat}$"
return self._str_match(pat, case, flags, na)
def _str_slice(
self, start: int | None = None, stop: int | None = None, step: int | None = None
):
if stop is None:
return super()._str_slice(start, stop, step)
if start is None:
start = 0
if step is None:
step = 1
return type(self)(
pc.utf8_slice_codeunits(self._pa_array, start=start, stop=stop, step=step)
)
def _str_isalnum(self):
result = pc.utf8_is_alnum(self._pa_array)
return self._result_converter(result)
def _str_isalpha(self):
result = pc.utf8_is_alpha(self._pa_array)
return self._result_converter(result)
def _str_isdecimal(self):
result = pc.utf8_is_decimal(self._pa_array)
return self._result_converter(result)
def _str_isdigit(self):
result = pc.utf8_is_digit(self._pa_array)
return self._result_converter(result)
def _str_islower(self):
result = pc.utf8_is_lower(self._pa_array)
return self._result_converter(result)
def _str_isnumeric(self):
result = pc.utf8_is_numeric(self._pa_array)
return self._result_converter(result)
def _str_isspace(self):
result = pc.utf8_is_space(self._pa_array)
return self._result_converter(result)
def _str_istitle(self):
result = pc.utf8_is_title(self._pa_array)
return self._result_converter(result)
def _str_isupper(self):
result = pc.utf8_is_upper(self._pa_array)
return self._result_converter(result)
def _str_len(self):
result = pc.utf8_length(self._pa_array)
return self._convert_int_dtype(result)
def _str_lower(self):
return type(self)(pc.utf8_lower(self._pa_array))
def _str_upper(self):
return type(self)(pc.utf8_upper(self._pa_array))
def _str_strip(self, to_strip=None):
if to_strip is None:
result = pc.utf8_trim_whitespace(self._pa_array)
else:
result = pc.utf8_trim(self._pa_array, characters=to_strip)
return type(self)(result)
def _str_lstrip(self, to_strip=None):
if to_strip is None:
result = pc.utf8_ltrim_whitespace(self._pa_array)
else:
result = pc.utf8_ltrim(self._pa_array, characters=to_strip)
return type(self)(result)
def _str_rstrip(self, to_strip=None):
if to_strip is None:
result = pc.utf8_rtrim_whitespace(self._pa_array)
else:
result = pc.utf8_rtrim(self._pa_array, characters=to_strip)
return type(self)(result)
def _str_removeprefix(self, prefix: str):
if not pa_version_under13p0:
starts_with = pc.starts_with(self._pa_array, pattern=prefix)
removed = pc.utf8_slice_codeunits(self._pa_array, len(prefix))
result = pc.if_else(starts_with, removed, self._pa_array)
return type(self)(result)
return super()._str_removeprefix(prefix)
def _str_removesuffix(self, suffix: str):
ends_with = pc.ends_with(self._pa_array, pattern=suffix)
removed = pc.utf8_slice_codeunits(self._pa_array, 0, stop=-len(suffix))
result = pc.if_else(ends_with, removed, self._pa_array)
return type(self)(result)
def _str_count(self, pat: str, flags: int = 0):
if flags:
return super()._str_count(pat, flags)
result = pc.count_substring_regex(self._pa_array, pat)
return self._convert_int_dtype(result)
def _str_find(self, sub: str, start: int = 0, end: int | None = None):
if start != 0 and end is not None:
slices = pc.utf8_slice_codeunits(self._pa_array, start, stop=end)
result = pc.find_substring(slices, sub)
not_found = pc.equal(result, -1)
offset_result = pc.add(result, end - start)
result = pc.if_else(not_found, result, offset_result)
elif start == 0 and end is None:
slices = self._pa_array
result = pc.find_substring(slices, sub)
else:
return super()._str_find(sub, start, end)
return self._convert_int_dtype(result)
def _convert_int_dtype(self, result):
return Int64Dtype().__from_arrow__(result)
def _reduce(
self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs
):
result = self._reduce_calc(name, skipna=skipna, keepdims=keepdims, **kwargs)
if name in ("argmin", "argmax") and isinstance(result, pa.Array):
return self._convert_int_dtype(result)
elif isinstance(result, pa.Array):
return type(self)(result)
else:
return result
def _rank(
self,
*,
axis: AxisInt = 0,
method: str = "average",
na_option: str = "keep",
ascending: bool = True,
pct: bool = False,
):
"""
See Series.rank.__doc__.
"""
return self._convert_int_dtype(
self._rank_calc(
axis=axis,
method=method,
na_option=na_option,
ascending=ascending,
pct=pct,
)
)
class ArrowStringArrayNumpySemantics(ArrowStringArray):
_storage = "pyarrow_numpy"
def __init__(self, values) -> None:
_chk_pyarrow_available()
if isinstance(values, (pa.Array, pa.ChunkedArray)) and pa.types.is_large_string(
values.type
):
values = pc.cast(values, pa.string())
super().__init__(values)
@classmethod
def _result_converter(cls, values, na=None):
if not isna(na):
values = values.fill_null(bool(na))
return ArrowExtensionArray(values).to_numpy(na_value=np.nan)
def __getattribute__(self, item):
# ArrowStringArray and we both inherit from ArrowExtensionArray, which
# creates inheritance problems (Diamond inheritance)
if item in ArrowStringArrayMixin.__dict__ and item not in (
"_pa_array",
"__dict__",
):
return partial(getattr(ArrowStringArrayMixin, item), self)
return super().__getattribute__(item)
def _str_map(
self, f, na_value=None, dtype: Dtype | None = None, convert: bool = True
):
if dtype is None:
dtype = self.dtype
if na_value is None:
na_value = self.dtype.na_value
mask = isna(self)
arr = np.asarray(self)
if is_integer_dtype(dtype) or is_bool_dtype(dtype):
if is_integer_dtype(dtype):
na_value = np.nan
else:
na_value = False
try:
result = lib.map_infer_mask(
arr,
f,
mask.view("uint8"),
convert=False,
na_value=na_value,
dtype=np.dtype(dtype), # type: ignore[arg-type]
)
return result
except ValueError:
result = lib.map_infer_mask(
arr,
f,
mask.view("uint8"),
convert=False,
na_value=na_value,
)
if convert and result.dtype == object:
result = lib.maybe_convert_objects(result)
return result
elif is_string_dtype(dtype) and not is_object_dtype(dtype):
# i.e. StringDtype
result = lib.map_infer_mask(
arr, f, mask.view("uint8"), convert=False, na_value=na_value
)
result = pa.array(result, mask=mask, type=pa.string(), from_pandas=True)
return type(self)(result)
else:
# This is when the result type is object. We reach this when
# -> We know the result type is truly object (e.g. .encode returns bytes
# or .findall returns a list).
# -> We don't know the result type. E.g. `.get` can return anything.
return lib.map_infer_mask(arr, f, mask.view("uint8"))
def _convert_int_dtype(self, result):
if isinstance(result, pa.Array):
result = result.to_numpy(zero_copy_only=False)
else:
result = result.to_numpy()
if result.dtype == np.int32:
result = result.astype(np.int64)
return result
def _cmp_method(self, other, op):
result = super()._cmp_method(other, op)
return result.to_numpy(np.bool_, na_value=False)
def value_counts(self, dropna: bool = True) -> Series:
from pandas import Series
result = super().value_counts(dropna)
return Series(
result._values.to_numpy(), index=result.index, name=result.name, copy=False
)
def _reduce(
self, name: str, *, skipna: bool = True, keepdims: bool = False, **kwargs
):
if name in ["any", "all"]:
if not skipna and name == "all":
nas = pc.invert(pc.is_null(self._pa_array))
arr = pc.and_kleene(nas, pc.not_equal(self._pa_array, ""))
else:
arr = pc.not_equal(self._pa_array, "")
return ArrowExtensionArray(arr)._reduce(
name, skipna=skipna, keepdims=keepdims, **kwargs
)
else:
return super()._reduce(name, skipna=skipna, keepdims=keepdims, **kwargs)
def insert(self, loc: int, item) -> ArrowStringArrayNumpySemantics:
if item is np.nan:
item = libmissing.NA
return super().insert(loc, item) # type: ignore[return-value]