@@ -1794,27 +1794,31 @@ similar to how ``read_csv`` and ``to_csv`` work. (new in 0.11.0)
1794
1794
1795
1795
os.remove(' store_tl.h5' )
1796
1796
1797
- .. _io.hdf5- storer :
1797
+ .. _io.hdf5- fixed :
1798
1798
1799
- Storer Format
1800
- ~~~~~~~~~~~~~
1799
+ Fixed Format
1800
+ ~~~~~~~~~~~~
1801
+
1802
+ .. note::
1803
+
1804
+ This was prior to 0.13 .0 the `` Storer`` format .
1801
1805
1802
1806
The examples above show storing using `` put`` , which write the HDF5 to `` PyTables`` in a fixed array format , called
1803
- the `` storer `` format . These types of stores are are ** not ** appendable once written (though you can simply
1807
+ the `` fixed `` format . These types of stores are are ** not ** appendable once written (though you can simply
1804
1808
remove them and rewrite). Nor are they ** queryable** ; they must be
1805
1809
retrieved in their entirety. These offer very fast writing and slightly faster reading than `` table`` stores.
1806
- This format is specified by default when using `` put`` or by `` fmt = ' s ' ``
1810
+ This format is specified by default when using `` put`` or `` to_hdf `` or by `` format = ' fixed ' `` or `` format = ' f ' ``
1807
1811
1808
1812
.. warning::
1809
1813
1810
- A `` storer `` format will raise a `` TypeError `` if you try to retrieve using a `` where`` .
1814
+ A `` fixed `` format will raise a `` TypeError `` if you try to retrieve using a `` where`` .
1811
1815
1812
1816
.. code- block:: python
1813
1817
1814
- DataFrame(randn(10 ,2 )).to_hdf(' test_storer .h5' ,' df' )
1818
+ DataFrame(randn(10 ,2 )).to_hdf(' test_fixed .h5' ,' df' )
1815
1819
1816
- pd.read_hdf(' test_storer .h5' ,' df' ,where = ' index>5' )
1817
- TypeError : cannot pass a where specification when reading a non - table
1820
+ pd.read_hdf(' test_fixed .h5' ,' df' ,where = ' index>5' )
1821
+ TypeError : cannot pass a where specification when reading a fixed format .
1818
1822
this store must be selected in its entirety
1819
1823
1820
1824
@@ -1827,7 +1831,11 @@ Table Format
1827
1831
format . Conceptually a `` table`` is shaped very much like a DataFrame,
1828
1832
with rows and columns. A `` table`` may be appended to in the same or
1829
1833
other sessions. In addition, delete & query type operations are
1830
- supported. This format is specified by `` fmt = ' t' `` to `` append`` or `` put`` .
1834
+ supported. This format is specified by `` format = ' table' `` or `` format = ' t' ``
1835
+ to `` append`` or `` put`` or `` to_hdf``
1836
+
1837
+ This format can be set as an option as well `` pd.set_option(' io.hdf.default_format' ,' table' )`` to
1838
+ enable `` put/ append/ to_hdf`` to by default store in the `` table`` format .
1831
1839
1832
1840
.. ipython:: python
1833
1841
:suppress:
@@ -1854,7 +1862,7 @@ supported. This format is specified by ``fmt='t'`` to ``append`` or ``put``.
1854
1862
1855
1863
.. note::
1856
1864
1857
- You can also create a `` table`` by passing `` fmt = ' t' `` to a `` put`` operation.
1865
+ You can also create a `` table`` by passing `` format = ' table ' `` or `` format = ' t' `` to a `` put`` operation.
1858
1866
1859
1867
.. _io.hdf5- keys:
1860
1868
@@ -2363,7 +2371,7 @@ Starting in 0.11, passing a ``min_itemsize`` dict will cause all passed columns
2363
2371
External Compatibility
2364
2372
~~~~~~~~~~~~~~~~~~~~~~
2365
2373
2366
- `` HDFStore`` write storer objects in specific formats suitable for
2374
+ `` HDFStore`` write `` table `` format objects in specific formats suitable for
2367
2375
producing loss- less roundtrips to pandas objects. For external
2368
2376
compatibility, `` HDFStore`` can read native `` PyTables`` format
2369
2377
tables. It is possible to write an `` HDFStore`` object that can easily
0 commit comments