|
7 | 7 | Any, |
8 | 8 | Callable, |
9 | 9 | ) |
10 | | -import warnings |
11 | 10 |
|
12 | 11 | import numpy as np |
13 | 12 |
|
|
22 | 21 | ArrayLike, |
23 | 22 | DtypeObj, |
24 | 23 | ) |
25 | | -from pandas.util._exceptions import find_stack_level |
26 | 24 |
|
27 | 25 | from pandas.core.dtypes.base import _registry as registry |
28 | 26 | from pandas.core.dtypes.dtypes import ( |
|
32 | 30 | IntervalDtype, |
33 | 31 | PeriodDtype, |
34 | 32 | ) |
35 | | -from pandas.core.dtypes.generic import ( |
36 | | - ABCCategorical, |
37 | | - ABCIndex, |
38 | | -) |
| 33 | +from pandas.core.dtypes.generic import ABCIndex |
39 | 34 | from pandas.core.dtypes.inference import ( |
40 | 35 | is_array_like, |
41 | 36 | is_bool, |
@@ -275,47 +270,6 @@ def is_scipy_sparse(arr) -> bool: |
275 | 270 | return _is_scipy_sparse(arr) |
276 | 271 |
|
277 | 272 |
|
278 | | -def is_categorical(arr) -> bool: |
279 | | - """ |
280 | | - Check whether an array-like is a Categorical instance. |
281 | | -
|
282 | | - .. deprecated:: 1.1.0 |
283 | | - Use ``is_categorical_dtype`` instead. |
284 | | -
|
285 | | - Parameters |
286 | | - ---------- |
287 | | - arr : array-like |
288 | | - The array-like to check. |
289 | | -
|
290 | | - Returns |
291 | | - ------- |
292 | | - boolean |
293 | | - Whether or not the array-like is of a Categorical instance. |
294 | | -
|
295 | | - Examples |
296 | | - -------- |
297 | | - >>> is_categorical([1, 2, 3]) |
298 | | - False |
299 | | -
|
300 | | - Categoricals, Series Categoricals, and CategoricalIndex will return True. |
301 | | -
|
302 | | - >>> cat = pd.Categorical([1, 2, 3]) |
303 | | - >>> is_categorical(cat) |
304 | | - True |
305 | | - >>> is_categorical(pd.Series(cat)) |
306 | | - True |
307 | | - >>> is_categorical(pd.CategoricalIndex([1, 2, 3])) |
308 | | - True |
309 | | - """ |
310 | | - warnings.warn( |
311 | | - "is_categorical is deprecated and will be removed in a future version. " |
312 | | - "Use is_categorical_dtype instead.", |
313 | | - FutureWarning, |
314 | | - stacklevel=find_stack_level(), |
315 | | - ) |
316 | | - return isinstance(arr, ABCCategorical) or is_categorical_dtype(arr) |
317 | | - |
318 | | - |
319 | 273 | def is_datetime64_dtype(arr_or_dtype) -> bool: |
320 | 274 | """ |
321 | 275 | Check whether an array-like or dtype is of the datetime64 dtype. |
@@ -1772,7 +1726,6 @@ def is_all_strings(value: ArrayLike) -> bool: |
1772 | 1726 | "is_array_like", |
1773 | 1727 | "is_bool", |
1774 | 1728 | "is_bool_dtype", |
1775 | | - "is_categorical", |
1776 | 1729 | "is_categorical_dtype", |
1777 | 1730 | "is_complex", |
1778 | 1731 | "is_complex_dtype", |
|
0 commit comments