Skip to content

Commit 69263dc

Browse files
committed
review doc fixes 2
1 parent 9d4a905 commit 69263dc

File tree

1 file changed

+18
-19
lines changed

1 file changed

+18
-19
lines changed

doc/source/categorical.rst

+18-19
Original file line numberDiff line numberDiff line change
@@ -44,16 +44,6 @@ The categorical data type is useful in the following cases:
4444
* As a signal to other Python libraries that this column should be treated as a categorical
4545
variable (e.g. to use suitable statistical methods or plot types).
4646

47-
.. note::
48-
49-
In contrast to R's `factor` function, categorical data is not converting input values to
50-
strings and categories will end up the same data type as the original values.
51-
52-
.. note::
53-
54-
In contrast to R's `factor` function, there is currently no way to assign/change labels at
55-
creation time. Use `categories` to change the categories after creation time.
56-
5747
See also the :ref:`API docs on categoricals<api.categorical>`.
5848

5949
.. _categorical.objectcreation:
@@ -113,19 +103,18 @@ Categorical data has a specific ``category`` :ref:`dtype <basics.dtypes>`:
113103
DataFrame Creation
114104
~~~~~~~~~~~~~~~~~~
115105

116-
Columns in a ``DataFrame`` can be batch converted to categorical, either at the time of construction
117-
or after construction. The conversion to categorical is done on a column by column basis; labels present
118-
in a one column will not be carried over and used as categories in another column.
106+
Similar to the previous section where a single column was converted to categorical, all columns in a
107+
``DataFrame`` can be batch converted to categorical either during or after construction.
119108

120-
Columns can be batch converted by specifying ``dtype="category"`` when constructing a ``DataFrame``:
109+
This can be done during construction by specifying ``dtype="category"`` in the ``DataFrame`` constructor:
121110

122111
.. ipython:: python
123112
124113
df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')}, dtype="category")
125114
df.dtypes
126115
127-
Note that the categories present in each column differ; since the conversion is done on a column by column
128-
basis, only labels present in a given column are categories:
116+
Note that the categories present in each column differ; the conversion is done column by column, so
117+
only labels present in a given column are categories:
129118

130119
.. ipython:: python
131120
@@ -135,15 +124,15 @@ basis, only labels present in a given column are categories:
135124
136125
.. versionadded:: 0.23.0
137126

138-
Similarly, columns in an existing ``DataFrame`` can be batch converted using :meth:`DataFrame.astype`:
127+
Analogously, all columns in an existing ``DataFrame`` can be batch converted using :meth:`DataFrame.astype`:
139128

140129
.. ipython:: python
141130
142131
df = pd.DataFrame({'A': list('abca'), 'B': list('bccd')})
143132
df_cat = df.astype('category')
144133
df_cat.dtypes
145134
146-
This conversion is likewise done on a column by column basis:
135+
This conversion is likewise done column by column:
147136

148137
.. ipython:: python
149138
@@ -191,7 +180,7 @@ are consistent among all columns.
191180
categories for each column, the ``categories`` parameter can be determined programatically by
192181
``categories = pd.unique(df.values.ravel())``.
193182

194-
If you already have `codes` and `categories`, you can use the
183+
If you already have ``codes`` and ``categories``, you can use the
195184
:func:`~pandas.Categorical.from_codes` constructor to save the factorize step
196185
during normal constructor mode:
197186

@@ -216,6 +205,16 @@ To get back to the original ``Series`` or NumPy array, use
216205
s2.astype(str)
217206
np.asarray(s2)
218207
208+
.. note::
209+
210+
In contrast to R's `factor` function, categorical data is not converting input values to
211+
strings; categories will end up the same data type as the original values.
212+
213+
.. note::
214+
215+
In contrast to R's `factor` function, there is currently no way to assign/change labels at
216+
creation time. Use `categories` to change the categories after creation time.
217+
219218
.. _categorical.categoricaldtype:
220219

221220
CategoricalDtype

0 commit comments

Comments
 (0)