@@ -4232,7 +4232,8 @@ def as_matrix(self, columns=None):
42324232
42334233 @property
42344234 def values (self ):
4235- """Numpy representation of NDFrame
4235+ """
4236+ Return NDFrame as ndarray or ndarray-like depending on the dtype.
42364237
42374238 Notes
42384239 -----
@@ -4245,6 +4246,16 @@ def values(self):
42454246 float32. If dtypes are int32 and uint8, dtype will be upcast to
42464247 int32. By numpy.find_common_type convention, mixing int64 and uint64
42474248 will result in a flot64 dtype.
4249+
4250+ Examples
4251+ --------
4252+ >>> df = pd.DataFrame({'a': np.random.randn(2).astype('f4'),
4253+ ... 'b': [True, False], 'c': [1.0, 2.0]})
4254+ >>> type(df.values)
4255+ <class 'numpy.ndarray'>
4256+ >>> df.values
4257+ array([[0.25209328532218933, True, 1.0],
4258+ [0.35383567214012146, False, 2.0]], dtype=object)
42484259 """
42494260 self ._consolidate_inplace ()
42504261 return self ._data .as_array (transpose = self ._AXIS_REVERSED )
@@ -4260,16 +4271,76 @@ def _get_values(self):
42604271 return self .values
42614272
42624273 def get_values (self ):
4263- """same as values (but handles sparseness conversions)"""
4274+ """
4275+ Same as values (but handles sparseness conversions).
4276+
4277+ Returns
4278+ -------
4279+ numpy.ndaray
4280+ Numpy representation of NDFrame
4281+
4282+ Examples
4283+ --------
4284+ >>> df = pd.DataFrame({'a': np.random.randn(2).astype('f4'),
4285+ ... 'b': [True, False], 'c': [1.0, 2.0]})
4286+ >>> df.get_values()
4287+ array([[0.25209328532218933, True, 1.0],
4288+ [0.35383567214012146, False, 2.0]], dtype=object)
4289+ """
42644290 return self .values
42654291
42664292 def get_dtype_counts (self ):
4267- """Return the counts of dtypes in this object."""
4293+ """
4294+ Return counts of unique dtypes in this object.
4295+
4296+ Returns
4297+ -------
4298+ dtype Number of dtype
4299+
4300+ See Also
4301+ --------
4302+ dtypes : Return the dtypes in this object.
4303+
4304+ Examples
4305+ --------
4306+ >>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
4307+ >>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
4308+ >>> df['int'].astype(int)
4309+ >>> df['float'].astype(float)
4310+ >>> df.get_dtype_counts()
4311+ float64 1
4312+ int64 1
4313+ object 1
4314+ dtype: int64
4315+ """
42684316 from pandas import Series
42694317 return Series (self ._data .get_dtype_counts ())
42704318
42714319 def get_ftype_counts (self ):
4272- """Return the counts of ftypes in this object."""
4320+ """
4321+ Return counts of unique ftypes in this object.
4322+
4323+ Returns
4324+ -------
4325+ dtype Number of dtype:dense|sparse
4326+
4327+ See Also
4328+ --------
4329+ ftypes : Return
4330+ ftypes (indication of sparse/dense and dtype) in this object.
4331+
4332+ Examples
4333+ --------
4334+ >>> a = [['a', 1, 1.0], ['b', 2, 2.0], ['c', 3, 3.0]]
4335+ >>> df = pd.DataFrame(a, columns=['str', 'int', 'float'])
4336+ >>> df['int'].astype(int)
4337+ >>> df['float'].astype(float)
4338+ >>> df.get_dtype_counts()
4339+ float64:dense 1
4340+ int64:dense 1
4341+ object:dense 1
4342+ dtype: int64
4343+ """
42734344 from pandas import Series
42744345 return Series (self ._data .get_ftype_counts ())
42754346
0 commit comments