Skip to content

Commit f3a3f63

Browse files
author
Kei
committed
Update according to pr comments
1 parent bcca14f commit f3a3f63

File tree

2 files changed

+8
-112
lines changed

2 files changed

+8
-112
lines changed

pandas/core/generic.py

-1
Original file line numberDiff line numberDiff line change
@@ -2044,7 +2044,6 @@ def __setstate__(self, state) -> None:
20442044
object.__setattr__(self, "_attrs", attrs)
20452045
flags = state.get("_flags", {"allows_duplicate_labels": True})
20462046
object.__setattr__(self, "_flags", Flags(self, **flags))
2047-
20482047
# set in the order of internal names
20492048
# to avoid definitional recursion
20502049
# e.g. say fill_value needing _mgr to be

pandas/tests/groupby/transform/test_transform.py

+8-111
Original file line numberDiff line numberDiff line change
@@ -1537,128 +1537,25 @@ def test_transform_sum_one_column_with_matching_labels_and_missing_labels():
15371537
tm.assert_frame_equal(result, expected)
15381538

15391539

1540-
# GH#58084
1541-
def test_min_one_unobserved_category_no_type_coercion():
1540+
@pytest.mark.parametrize("dtype", ["int32", "float32"])
1541+
def test_min_one_unobserved_category_no_type_coercion(dtype):
1542+
# GH#58084
15421543
df = DataFrame({"A": Categorical([1, 1, 2], categories=[1, 2, 3]), "B": [3, 4, 5]})
1543-
df["B"] = df["B"].astype("int32")
1544+
df["B"] = df["B"].astype(dtype)
15441545
gb = df.groupby("A", observed=False)
15451546
result = gb.transform("min")
15461547

1547-
expected = DataFrame({"B": [3, 3, 5]}, dtype="int32")
1548+
expected = DataFrame({"B": [3, 3, 5]}, dtype=dtype)
15481549
tm.assert_frame_equal(expected, result)
15491550

15501551

1551-
# GH#58084
1552-
def test_min_multiple_unobserved_categories_no_type_coercion():
1553-
df = DataFrame(
1554-
{
1555-
"X": Categorical(
1556-
["432945", "randomcat", -4325466, "randomcat", -4325466, -4325466],
1557-
categories=[
1558-
1,
1559-
"randomcat",
1560-
100,
1561-
333,
1562-
"cat43543",
1563-
-4325466,
1564-
54665,
1565-
-546767,
1566-
"432945",
1567-
767076,
1568-
],
1569-
),
1570-
"Y": [0, 940645, np.iinfo(np.int64).min, 9449, 100044444, 40],
1571-
}
1572-
)
1573-
df["Y"] = df["Y"].astype("int64")
1574-
1575-
gb = df.groupby("X", observed=False)
1576-
result = gb.transform("min")
1577-
1578-
expected = DataFrame(
1579-
{
1580-
"Y": [
1581-
0,
1582-
9449,
1583-
np.iinfo(np.int64).min,
1584-
9449,
1585-
np.iinfo(np.int64).min,
1586-
np.iinfo(np.int64).min,
1587-
]
1588-
},
1589-
dtype="int64",
1590-
)
1591-
tm.assert_frame_equal(expected, result)
1592-
1593-
1594-
# GH#58084
1595-
def test_min_float32_multiple_unobserved_categories_no_type_coercion():
1596-
df = DataFrame(
1597-
{
1598-
"X": Categorical(
1599-
["cat43543", -4325466, 54665, "cat43543", -4325466, 54665],
1600-
categories=[
1601-
1,
1602-
"randomcat",
1603-
100,
1604-
333,
1605-
"cat43543",
1606-
-4325466,
1607-
54665,
1608-
-546767,
1609-
"432945",
1610-
767076,
1611-
],
1612-
),
1613-
"Y": [
1614-
0.3940429,
1615-
940645.49,
1616-
np.finfo(np.float32).min,
1617-
9449.03333,
1618-
100044444.403294,
1619-
40.3020909,
1620-
],
1621-
}
1622-
)
1623-
df["Y"] = df["Y"].astype("float32")
1624-
1625-
gb = df.groupby("X", observed=False)
1626-
result = gb.transform("min")
1627-
1628-
expected = DataFrame(
1629-
{
1630-
"Y": [
1631-
0.3940429,
1632-
940645.49,
1633-
np.finfo(np.float32).min,
1634-
0.3940429,
1635-
940645.49,
1636-
np.finfo(np.float32).min,
1637-
]
1638-
},
1639-
dtype="float32",
1640-
)
1641-
tm.assert_frame_equal(expected, result)
1642-
1643-
1644-
# GH#58084
16451552
def test_min_all_empty_data_no_type_coercion():
1553+
# GH#58084
16461554
df = DataFrame(
16471555
{
16481556
"X": Categorical(
16491557
[],
1650-
categories=[
1651-
1,
1652-
"randomcat",
1653-
100,
1654-
333,
1655-
"cat43543",
1656-
-4325466,
1657-
54665,
1658-
-546767,
1659-
"432945",
1660-
767076,
1661-
],
1558+
categories=[1, "randomcat", 100],
16621559
),
16631560
"Y": [],
16641561
}
@@ -1672,8 +1569,8 @@ def test_min_all_empty_data_no_type_coercion():
16721569
tm.assert_frame_equal(expected, result)
16731570

16741571

1675-
# GH#58084
16761572
def test_min_one_dim_no_type_coercion():
1573+
# GH#58084
16771574
df = DataFrame({"Y": [9435, -5465765, 5055, 0, 954960]})
16781575
df["Y"] = df["Y"].astype("int32")
16791576
categories = Categorical([1, 2, 2, 5, 1], categories=[1, 2, 3, 4, 5])

0 commit comments

Comments
 (0)