BUG: very very slow when append long dictionary into HDF5 file #41616
Labels
Closing Candidate
May be closeable, needs more eyeballs
IO HDF5
read_hdf, HDFStore
Performance
Memory or execution speed performance
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
(optional) I have confirmed this bug exists on the master branch of pandas.
Note: Please read this guide detailing how to provide the necessary information for us to reproduce your bug.
Code Sample, a copy-pastable example
Problem description
[this should explain why the current behaviour is a problem and why the expected output is a better solution]
append very very slow!
Expected Output
Output of
pd.show_versions()
[paste the output of
pd.show_versions()
here leaving a blank line after the details tag]INSTALLED VERSIONS
commit : 2cb9652
python : 3.8.5.final.0
python-bits : 64
OS : Linux
OS-release : 5.4.0-42-generic
Version : #46-Ubuntu SMP Fri Jul 10 00:24:02 UTC 2020
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : None
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 1.2.4
numpy : 1.20.3
pytz : 2021.1
dateutil : 2.8.1
pip : 20.0.2
setuptools : 44.0.0
Cython : None
pytest : None
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : 4.6.3
html5lib : None
pymysql : None
psycopg2 : 2.8.6 (dt dec pq3 ext lo64)
jinja2 : 3.0.0
IPython : None
pandas_datareader: 0.9.0
bs4 : 4.9.3
bottleneck : None
fsspec : None
fastparquet : None
gcsfs : None
matplotlib : 3.4.2
numexpr : 2.7.3
odfpy : None
openpyxl : None
pandas_gbq : None
pyarrow : None
pyxlsb : None
s3fs : None
scipy : 1.6.3
sqlalchemy : None
tables : 3.6.1
tabulate : None
xarray : None
xlrd : None
xlwt : None
numba : None
The text was updated successfully, but these errors were encountered: