-
-
Notifications
You must be signed in to change notification settings - Fork 18k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
BUG: Empty column name in group dataframe when using pyarrow types #59823
Comments
@dbalabka you can dtype as '<M8[ns]' or 'datetime64[ns]'. df = pd.DataFrame(data).astype({'id': 'int64', 'metric': 'int64', 'date': '<M8[ns]'})
df = pd.DataFrame(data).astype({'id': 'int64', 'metric': 'int64', 'date': 'datetime64[ns]'}) |
@StrangersZero , thanks for the comment. I process the large dataset in Dask and adding type conversion might be an extra cluster work that I would like to avoid. In my case, I simply put the correct name after resampling. Still, such inconsistent behaviour of DataFrame meta data for different types looks weird. It would be great to align the behaviour for any type. |
Confirmed on main. Further investigations and PRs to fix are welcome! |
hey i'd like to take this one |
@rhshadrach from what i could look i think the issue might be on the Resample not in the groupby nor the apply |
Thanks, I'll add Resample for now. If you can reproduce the issue with just resample, post an example here and we can remove the groupby/apply labels. |
@rhshadrach Awesome i'll try to reproduce it only with the resample later today and i'll keep you guys posted |
hey @rhshadrach i was able to reproduce the error only with the resample it was quite easily actually: Reproducible Example:import pandas as pd
data = {
'id': [1, 1, 1, 2, 2, 2],
'date': pd.to_datetime(['2023-01-01', '2023-01-04', '2023-01-05', '2023-01-01', '2023-01-04', '2023-01-05']),
'metric': [1,1,1,1,1,1]
}
df = pd.DataFrame(data).astype({'id': 'int64', 'metric': 'int64', 'date': 'timestamp[ns][pyarrow]'})
print(
df.resample("D", on="date").sum()
) Issue DescriptionDataFrame column date should not be empty:
Expected BehaviorThe following snippet generates the Grouped DataFrame with expected column names: import pandas as pd
data = {
'id': [1, 1, 1, 2, 2, 2],
'date': pd.to_datetime(['2023-01-01', '2023-01-04', '2023-01-05', '2023-01-01', '2023-01-04', '2023-01-05']),
'metric': [1,1,1,1,1,1]
}
df = pd.DataFrame(data).astype({'id': 'int64', 'metric': 'int64', 'date': 'timestamp[ns][pyarrow]'})
print(
df.resample("D", on="date").sum()
)
|
btw i also made sure to use diferent methods for the resample like mean and median and it also has the same issue |
Thanks @dkcamargotz! |
Sure! Im trying to reproduce using upsample type of resample to track where the issue is. But im having trouble i'll keep looking for the bug on monday |
@rhshadrach, the following problem might be triggered by #59888 |
I've checked it seems these are two separate problems. The workaround described in #59888 does not help: import pandas as pd
import pyarrow as pa
data = {
'id': [1, 1, 1, 2, 2, 2],
'date': pd.to_datetime(['2023-01-01', '2023-01-04', '2023-01-05', '2023-01-01', '2023-01-04', '2023-01-05']),
'metric': [1,1,1,1,1,1]
}
df = pd.DataFrame(data).astype({'id': 'int64', 'metric': 'int64', 'date': pd.ArrowDtype(pa.timestamp('ns'))})
print(
df
.groupby(by=['id'])
.apply(lambda x: x.resample("D", on="date").sum(), include_groups=False)
) Still getting empty column:
|
Pandas version checks
I have checked that this issue has not already been reported.
I have confirmed this bug exists on the latest version of pandas.
I have confirmed this bug exists on the main branch of pandas.
Reproducible Example
Issue Description
Group DataFrame column
date
should not be empty:Expected Behavior
The following snippet generates the Grouped DataFrame with expected column names:
Installed Versions
UserWarning: Setuptools is replacing distutils.
INSTALLED VERSIONS
commit : d9cdd2e
python : 3.10.12.final.0
python-bits : 64
OS : Linux
OS-release : 5.15.153.1-microsoft-standard-WSL2
Version : #1 SMP Fri Mar 29 23:14:13 UTC 2024
machine : x86_64
processor : x86_64
byteorder : little
LC_ALL : en_US.UTF-8
LANG : en_US.UTF-8
LOCALE : en_US.UTF-8
pandas : 2.2.2
numpy : 1.26.3
pytz : 2023.4
dateutil : 2.8.2
setuptools : 69.0.3
pip : 24.0
Cython : None
pytest : 7.4.4
hypothesis : None
sphinx : None
blosc : None
feather : None
xlsxwriter : None
lxml.etree : None
html5lib : None
pymysql : None
psycopg2 : None
jinja2 : 3.1.3
IPython : 8.20.0
pandas_datareader : None
adbc-driver-postgresql: None
adbc-driver-sqlite : None
bs4 : 4.12.3
bottleneck : None
dataframe-api-compat : None
fastparquet : None
fsspec : 2023.12.2
gcsfs : 2023.12.2post1
matplotlib : 3.8.2
numba : 0.58.1
numexpr : None
odfpy : None
openpyxl : 3.1.2
pandas_gbq : None
pyarrow : 14.0.2
pyreadstat : None
python-calamine : None
pyxlsb : None
s3fs : 2023.12.2
scipy : 1.12.0
sqlalchemy : 2.0.29
tables : None
tabulate : 0.9.0
xarray : None
xlrd : None
zstandard : None
tzdata : 2023.4
qtpy : None
pyqt5 : None
The text was updated successfully, but these errors were encountered: