-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_acc_dense.py
190 lines (169 loc) · 7.33 KB
/
test_acc_dense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os
import os.path as osp
import torch
import numpy as np
import sys
from csrnet import CSRNet
from dataset import *
import math
import tqdm
rand_seed = 64678
if rand_seed is not None:
random.seed(rand_seed)
np.random.seed(rand_seed)
torch.manual_seed(rand_seed)
torch.cuda.manual_seed_all(rand_seed)
EVAL_MODE = 'Rank' # None | Rank | NoCompare
#pretrained_model = '../results/eval_1_ShanghaiTechA_Combine_CSRNet/809_model_best.pth.tar'
#pretrained_model = '../results/eval_2_ShanghaiTechA_Reg_CSRNet/688_model_best.pth.tar'
#pretrained_model = '../results/eval_5_ShanghaiTechA_AllCombine_CSRNet/188_model_best.pth.tar'
#pretrained_model = '../results/eval_2_1_ShanghaiTechA_Reg_CSRNet/model_best.pth.tar'
#pretrained_model = '../results/22_1_UCF-QNRF_Combine_CSRNet/model_best.pth.tar'
pretrained_model = '../results/22_2_UCF-QNRF_AllCombine_CSRNet/model_best.pth.tar'
down_sample = 8
os.environ['CUDA_VISIBLE_DEVICES'] = "3"
net = CSRNet(add_mode=False)
net.cuda()
print("=> loading checkpoint '{}'".format(pretrained_model))
checkpoint = torch.load(pretrained_model)
net.load_state_dict(checkpoint['state_dict'])
#data_val = ShanghaiTech_eval(down_sample=down_sample, is_A=True)
#data_compare = ShanghaiTech_compare(down_sample=down_sample, is_A=True)
data_compare = UCF_compare(down_sample=down_sample)
data_val = UCF_eval(down_sample=down_sample)
if EVAL_MODE == 'None':
is_rank = False
elif EVAL_MODE == 'Rank':
is_rank = True
elif EVAL_MODE == 'NoCompare':
is_rank = None
else:
raise AssertionError("Invalid Evaluation Mode!")
data_loader_val = torch.utils.data.DataLoader(data_val,batch_size=1,shuffle=False)
data_loader_compare = torch.utils.data.DataLoader(data_compare,batch_size=1,shuffle=False)
def evaluate_model(net, data_loader_val, data_loader_compare, rank, scaling_rate=100):
net.eval()
mae_accs = []
comp_nums = []
comp_outs = []
with torch.no_grad():
if rank is None:
for blob in tqdm.tqdm(data_loader_val):
im_data = blob['im'].cuda()
num = blob['num'][0].numpy()
out, _ = net(im_data)
out = out[0].cpu().numpy()
pred = out * scaling_rate
mae_accs.append((num, np.abs(min(num, pred))/max(num, pred)))
else:
for blob in data_loader_compare:
im_data = blob['im'].cuda()
num = blob['num'][0].numpy()
out, _ = net(im_data)
out = out[0].cpu().numpy()
comp_nums.append(num)
comp_outs.append(out)
X = np.array(comp_outs)
y = np.array(comp_nums)
if rank:
arg_X = np.argsort(X.squeeze())
rank_X = arg_X.copy()
for i,e in enumerate(arg_X):
rank_X[e] = i
arg_y = np.argsort(y.squeeze())
rank_y = arg_y.copy()
for i,e in enumerate(arg_y):
rank_y[e] = i
X_b = np.c_[np.ones((len(rank_X), 1)),rank_X.reshape(-1,1)]
linalg = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(rank_y.reshape(-1,1))
print(linalg[0], linalg[1])
for blob in tqdm.tqdm(data_loader_val):
im_data = blob['im'].cuda()
num = blob['num'][0].numpy()
out, _ = net(im_data)
out = out[0].cpu().numpy()
if out < min(X.squeeze()):
out = min(X.squeeze())
if out > max(X.squeeze()):
out = max(X.squeeze())
min_idx = 0
max_idx = 0
min_diff = 10000
max_diff = 10000
for i,e in enumerate(X.squeeze()):
if e < out:
if out - e < min_diff:
min_diff = out - e
min_idx = i
elif e > out:
if e - out < max_diff:
max_diff = e - out
max_idx = i
else:
min_idx = max_idx = i
min_diff = max_diff = 0
break
min_ = out - min_diff
max_ = out + max_diff
min_rank = rank_X[min_idx]
max_rank = rank_X[max_idx]
if min_idx != max_idx:
p = (out - min_)/(max_ - min_)
out_rank = p * min_rank + (1 - p) * max_rank
else:
out_rank = min_rank
pred_rank = linalg[1] * out_rank + linalg[0]
y.sort()
if pred_rank < min(rank_y):
pred = y[np.argmin(rank_y)]
elif pred_rank > max(rank_y):
pred = y[np.argmax(rank_y)]
else:
min_y_idx = math.floor(pred_rank)
max_y_idx = math.ceil(pred_rank)
pred = y[min_y_idx] * (max_y_idx - pred_rank)+ y[max_y_idx] * (pred_rank - min_y_idx)
#print(pred_rank, y[min_y_idx], y[max_y_idx], pred, num)
mae_accs.append((num, np.abs(min(num, pred))/max(num, pred)))
else:
X_b = np.c_[np.ones((len(X), 1)),X]
linalg = np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y)
print(linalg[0],linalg[1])
for blob in tqdm.tqdm(data_loader_val):
im_data = blob['im'].cuda()
num = blob['num'][0].numpy()
out, _ = net(im_data)
out = out[0].cpu().numpy()
pred = linalg[1] * out + linalg[0]
mae_accs.append((num, np.abs(min(num, pred))/max(num, pred)))
acc_0_200 = []
acc_200_400 = []
acc_400_700 = []
acc_700_1000 = []
acc_1000_1500 = []
acc_1500_3000 = []
acc_3000_ = []
for mae in mae_accs:
if mae[0] >= 0 and mae[0] < 200:
acc_0_200.append(mae[1])
elif mae[0] >= 200 and mae[0] < 400:
acc_200_400.append(mae[1])
elif mae[0] >= 400 and mae[0] < 700:
acc_400_700.append(mae[1])
elif mae[0] >= 700 and mae[0] < 1000:
acc_700_1000.append(mae[1])
elif mae[0] >= 1000 and mae[0] < 1500:
acc_1000_1500.append(mae[1])
elif mae[0] >= 1500 and mae[0] < 3000:
acc_1500_3000.append(mae[1])
else:
acc_3000_.append(mae[1])
print(len(acc_0_200), len(acc_200_400), len(acc_400_700), len(acc_700_1000), len(acc_1000_1500), len(acc_1500_3000), len(acc_3000_))
acc_0_200 = np.average(np.array(acc_0_200))
acc_200_400 = np.average(np.array(acc_200_400))
acc_400_700 = np.average(np.array(acc_400_700))
acc_700_1000 = np.average(np.array(acc_700_1000))
acc_1000_1500 = np.average(np.array(acc_1000_1500))
acc_1500_3000 = np.average(np.array(acc_1500_3000))
acc_3000_ = np.average(np.array(acc_3000_))
print(acc_0_200, acc_200_400, acc_400_700, acc_700_1000, acc_1000_1500, acc_1500_3000, acc_3000_)
evaluate_model(net, data_loader_val, data_loader_compare, is_rank)