forked from open-mmlab/mmdetection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pascal_voc.py
140 lines (126 loc) · 4.47 KB
/
pascal_voc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import argparse
import os.path as osp
import xml.etree.ElementTree as ET
import mmcv
import numpy as np
from mmdet.core import voc_classes
label_ids = {name: i + 1 for i, name in enumerate(voc_classes())}
def parse_xml(args):
xml_path, img_path = args
tree = ET.parse(xml_path)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
bboxes = []
labels = []
bboxes_ignore = []
labels_ignore = []
for obj in root.findall('object'):
name = obj.find('name').text
label = label_ids[name]
difficult = int(obj.find('difficult').text)
bnd_box = obj.find('bndbox')
bbox = [
int(bnd_box.find('xmin').text),
int(bnd_box.find('ymin').text),
int(bnd_box.find('xmax').text),
int(bnd_box.find('ymax').text)
]
if difficult:
bboxes_ignore.append(bbox)
labels_ignore.append(label)
else:
bboxes.append(bbox)
labels.append(label)
if not bboxes:
bboxes = np.zeros((0, 4))
labels = np.zeros((0, ))
else:
bboxes = np.array(bboxes, ndmin=2) - 1
labels = np.array(labels)
if not bboxes_ignore:
bboxes_ignore = np.zeros((0, 4))
labels_ignore = np.zeros((0, ))
else:
bboxes_ignore = np.array(bboxes_ignore, ndmin=2) - 1
labels_ignore = np.array(labels_ignore)
annotation = {
'filename': img_path,
'width': w,
'height': h,
'ann': {
'bboxes': bboxes.astype(np.float32),
'labels': labels.astype(np.int64),
'bboxes_ignore': bboxes_ignore.astype(np.float32),
'labels_ignore': labels_ignore.astype(np.int64)
}
}
return annotation
def cvt_annotations(devkit_path, years, split, out_file):
if not isinstance(years, list):
years = [years]
annotations = []
for year in years:
filelist = osp.join(devkit_path, 'VOC{}/ImageSets/Main/{}.txt'.format(
year, split))
if not osp.isfile(filelist):
print('filelist does not exist: {}, skip voc{} {}'.format(
filelist, year, split))
return
img_names = mmcv.list_from_file(filelist)
xml_paths = [
osp.join(devkit_path, 'VOC{}/Annotations/{}.xml'.format(
year, img_name)) for img_name in img_names
]
img_paths = [
'VOC{}/JPEGImages/{}.jpg'.format(year, img_name)
for img_name in img_names
]
part_annotations = mmcv.track_progress(parse_xml,
list(zip(xml_paths, img_paths)))
annotations.extend(part_annotations)
mmcv.dump(annotations, out_file)
return annotations
def parse_args():
parser = argparse.ArgumentParser(
description='Convert PASCAL VOC annotations to mmdetection format')
parser.add_argument('devkit_path', help='pascal voc devkit path')
parser.add_argument('-o', '--out-dir', help='output path')
args = parser.parse_args()
return args
def main():
args = parse_args()
devkit_path = args.devkit_path
out_dir = args.out_dir if args.out_dir else devkit_path
mmcv.mkdir_or_exist(out_dir)
years = []
if osp.isdir(osp.join(devkit_path, 'VOC2007')):
years.append('2007')
if osp.isdir(osp.join(devkit_path, 'VOC2012')):
years.append('2012')
if '2007' in years and '2012' in years:
years.append(['2007', '2012'])
if not years:
raise IOError('The devkit path {} contains neither "VOC2007" nor '
'"VOC2012" subfolder'.format(devkit_path))
for year in years:
if year == '2007':
prefix = 'voc07'
elif year == '2012':
prefix = 'voc12'
elif year == ['2007', '2012']:
prefix = 'voc0712'
for split in ['train', 'val', 'trainval']:
dataset_name = prefix + '_' + split
print('processing {} ...'.format(dataset_name))
cvt_annotations(devkit_path, year, split,
osp.join(out_dir, dataset_name + '.pkl'))
if not isinstance(year, list):
dataset_name = prefix + '_test'
print('processing {} ...'.format(dataset_name))
cvt_annotations(devkit_path, year, 'test',
osp.join(out_dir, dataset_name + '.pkl'))
print('Done!')
if __name__ == '__main__':
main()