-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtest.py
253 lines (213 loc) · 10.8 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# -*- coding: utf-8 -*-
from __future__ import division
import os
import plotly
import multiprocessing
import copy as cp
import math
import GLOBAL_PRARM as gp
from plotly.graph_objs import Scatter
from plotly.graph_objs.scatter import Line
import torch
import numpy as np
from game import Decentralized_Game as Env
def test_parallel(new_game, c_pipe, overall, train_history_aps, eps):
train_examples_aps = []
reward_sum_aps = []
for index in range(new_game.environment.ap_number):
train_examples_aps.append([])
done = gp.ONE_EPISODE_RUN > 0
for _ in range(eps):
if done:
done = new_game.reset()
state, action, _, avail, reward, done, overall_reward = new_game.step_p(c_pipe) # Step
# print(action, reward)
reward_sum_aps.append(reward)
overall.append(overall_reward)
# reward_sum_aps = np.mean(reward_sum_aps, axis=0)
reward_sum_aps = np.array(reward_sum_aps)
for index in range(new_game.environment.ap_number):
train_examples_aps[index].extend(reward_sum_aps[:, index])
train_history_aps.append(train_examples_aps)
for index in range(new_game.environment.ap_number):
c_pipe[index].send((np.array([False]), np.array([False])))
c_pipe[index].close()
new_game.close()
del new_game
# test whole system
def test(args, T, dqn, val_mem_aps, metrics_all, metrics_aps, results_dir, evaluate=False):
env = Env(args)
metrics_all['steps'].append(T)
T_rewards_aps, T_Qs_aps = [], []
for _ in range(env.environment.ap_number):
metrics_aps[_]['steps'].append(T)
T_rewards_aps.append([])
T_Qs_aps.append([])
# Test performance over several episodes
reward_sum, reward_all, done = [], [], gp.ONE_EPISODE_RUN > 0
for _ in range(args.evaluation_episodes):
if done:
done = env.reset()
state, action, _, avail, reward, done, overall_reward = env.step(dqn)
reward_sum.append(reward)
reward_all.append(overall_reward)
# print(reward_sum)
reward_sum = np.array(reward_sum)
for index in range(env.environment.ap_number):
T_rewards_aps[index].extend(reward_sum[:, index])
# Test Q-values over validation memory
for index, val_mems in enumerate(val_mem_aps):
for state in val_mems: # Iterate over valid states
T_Qs_aps[index].append(dqn[index].evaluate_q(state))
avg_reward_aps, avg_Q_aps = [], []
for _ in range(env.environment.ap_number):
avg_reward_aps.append(sum(T_rewards_aps[_]) / len(T_rewards_aps[_]))
avg_Q_aps.append(sum(T_Qs_aps[_]) / len(T_Qs_aps[_]))
better_aps = True
if not evaluate:
# Save model parameters if improved
better_vote = np.array([False] * env.environment.ap_number, dtype=np.int32)
worse_vote = np.array([False] * env.environment.ap_number, dtype=np.int32)
for _ in range(env.environment.ap_number):
if avg_reward_aps[_] > metrics_aps[_]['best_avg_reward'] * args.better_indicator:
metrics_aps[_]['best_avg_reward'] = avg_reward_aps[_]
dqn[_].save(results_dir, _)
better_vote[_] = True
elif avg_reward_aps[_] * args.better_indicator > metrics_aps[_]['best_avg_reward']:
worse_vote[_] = True
if np.sum(better_vote) >= np.ceil(env.environment.ap_number / 3 * 2):
if not np.sum(worse_vote) >= np.ceil(env.environment.ap_number / 3 * 2):
for _ in range(env.environment.ap_number):
dqn[_].reload_step_state_dict()
else:
if gp.ENABLE_MODEL_RELOAD:
for _ in range(env.environment.ap_number):
dqn[_].reload_step_state_dict(False)
better_aps = False
# reload the state dict if obtain a better model
metrics_all['reward'].append(reward_all)
torch.save(metrics_all, os.path.join(results_dir, 'All.pth'))
for _ in range(env.environment.ap_number):
# Append to results and save metrics
metrics_aps[_]['rewards'].append(T_rewards_aps[_])
metrics_aps[_]['Qs'].append(T_Qs_aps[_])
torch.save(metrics_aps[_], os.path.join(results_dir, 'metrics' + str(_) + '.pth'))
_plot_line(metrics_all['steps'], metrics_all['reward'], 'All', path=results_dir)
for _ in range(env.environment.ap_number):
# Plot
_plot_line(metrics_aps[_]['steps'], metrics_aps[_]['rewards'], 'Reward' + str(_), path=results_dir)
_plot_line(metrics_aps[_]['steps'], metrics_aps[_]['Qs'], 'Q' + str(_), path=results_dir)
env.close()
# Return average reward and Q-value
return (avg_reward_aps, avg_Q_aps, better_aps, np.mean(reward_all))
# Test DQN
def test_p(args, T, dqn, val_mem_aps, metrics_all, metrics_aps, results_dir, evaluate=False):
env = Env(args)
metrics_all['steps'].append(T)
T_rewards_aps, T_Qs_aps, T_rewards = [], [], []
for _ in range(env.environment.ap_number):
metrics_aps[_]['steps'].append(T)
T_rewards_aps.append([])
T_Qs_aps.append([])
num_cores = math.floor(min(multiprocessing.cpu_count(), gp.ALLOCATED_CORES) - 1)
num_eps = math.ceil(args.evaluation_episodes / num_cores)
# make sure each subprocess can finish all the game (end with done)
with multiprocessing.Manager() as manager:
train_history_aps = manager.list()
overall = manager.list()
p_pipe_list2 = []
c_pipe_list2 = []
for _ in range(num_cores):
temp1, temp2 = [], []
for temp in range(env.environment.ap_number):
p_pipe, c_pipe = multiprocessing.Pipe()
temp1.append(p_pipe)
temp2.append(c_pipe)
p_pipe_list2.append(temp1)
c_pipe_list2.append(temp2)
p_pipe_list2 = np.array(p_pipe_list2)
process_list = []
for _ in range(num_cores):
process = multiprocessing.Process(target=test_parallel,
args=(cp.deepcopy(env), c_pipe_list2[_], overall, train_history_aps, num_eps))
process_list.append(process)
for pro in process_list:
pro.start()
on_off2 = True
while on_off2:
temp = np.ones(env.environment.ap_number, dtype=bool)
for index in range(env.environment.ap_number):
temp[index] = dqn[index].lookup_server_loop(p_pipe_list2[:, index])
on_off2 = temp.any()
for pro in process_list:
pro.join()
pro.terminate()
for res in train_history_aps:
for index, memerys in enumerate(res):
for reward in memerys:
T_rewards_aps[index].append(reward)
for ele in overall:
T_rewards.append(ele)
# Test Q-values over validation memory
for index, val_mems in enumerate(val_mem_aps):
for state in val_mems: # Iterate over valid states
T_Qs_aps[index].append(dqn[index].evaluate_q(state))
avg_reward_aps, avg_Q_aps = [], []
for _ in range(env.environment.ap_number):
avg_reward_aps.append(sum(T_rewards_aps[_]) / len(T_rewards_aps[_]))
avg_Q_aps.append(sum(T_Qs_aps[_]) / len(T_Qs_aps[_]))
better_aps = True
if not evaluate:
# Save model parameters if improved
better_vote = np.array([False] * env.environment.ap_number, dtype=np.int32)
worse_vote = np.array([False] * env.environment.ap_number, dtype=np.int32)
for _ in range(env.environment.ap_number):
if avg_reward_aps[_] >= metrics_aps[_]['best_avg_reward'] * args.better_indicator:
if avg_reward_aps[_] > metrics_aps[_]['best_avg_reward']:
metrics_aps[_]['best_avg_reward'] = avg_reward_aps[_]
dqn[_].save(results_dir, _)
better_vote[_] = True
elif avg_reward_aps[_] * args.better_indicator > metrics_aps[_]['best_avg_reward']:
worse_vote[_] = True
if np.sum(better_vote) >= np.ceil(env.environment.ap_number / 3 * 2):
if not np.sum(worse_vote) >= np.ceil(env.environment.ap_number / 3 * 2):
for _ in range(env.environment.ap_number):
dqn[_].reload_step_state_dict()
else:
if gp.ENABLE_MODEL_RELOAD:
for _ in range(env.environment.ap_number):
dqn[_].reload_step_state_dict(False)
better_aps = False
# reload the state dict if obtain a better model
metrics_all['reward'].append(T_rewards)
torch.save(metrics_all, os.path.join(results_dir, 'All.pth'))
for _ in range(env.environment.ap_number):
# Append to results and save metrics
metrics_aps[_]['rewards'].append(T_rewards_aps[_])
metrics_aps[_]['Qs'].append(T_Qs_aps[_])
torch.save(metrics_aps[_], os.path.join(results_dir, 'metrics' + str(_) + '.pth'))
_plot_line(metrics_all['steps'], metrics_all['reward'], 'All', path=results_dir)
for _ in range(env.environment.ap_number):
# Plot
_plot_line(metrics_aps[_]['steps'], metrics_aps[_]['rewards'], 'Reward' + str(_), path=results_dir)
_plot_line(metrics_aps[_]['steps'], metrics_aps[_]['Qs'], 'Q' + str(_), path=results_dir)
# Return average reward and Q-value
return (avg_reward_aps, avg_Q_aps, better_aps, np.mean(T_rewards))
# Plots min, max and mean + standard deviation bars of a population over time
def _plot_line(xs, ys_population, title, path=''):
max_colour, mean_colour, std_colour, transparent = 'rgb(0, 132, 180)', 'rgb(0, 172, 237)', 'rgba(29, 202, 255, 0.2)', 'rgba(0, 0, 0, 0)'
ys = torch.tensor(ys_population, dtype=torch.float32)
ys_min, ys_max, ys_mean, ys_std = ys.min(1)[0].squeeze(), ys.max(1)[0].squeeze(), ys.mean(1).squeeze(), ys.std(
1).squeeze()
ys_upper, ys_lower = ys_mean + ys_std, ys_mean - ys_std
trace_max = Scatter(x=xs, y=ys_max.numpy(), line=Line(color=max_colour, dash='dash'), name='Max')
trace_upper = Scatter(x=xs, y=ys_upper.numpy(), line=Line(color=transparent), name='+1 Std. Dev.', showlegend=False)
trace_mean = Scatter(x=xs, y=ys_mean.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=mean_colour),
name='Mean')
trace_lower = Scatter(x=xs, y=ys_lower.numpy(), fill='tonexty', fillcolor=std_colour, line=Line(color=transparent),
name='-1 Std. Dev.', showlegend=False)
trace_min = Scatter(x=xs, y=ys_min.numpy(), line=Line(color=max_colour, dash='dash'), name='Min')
plotly.offline.plot({
'data': [trace_upper, trace_mean, trace_lower, trace_min, trace_max],
'layout': dict(title=title, xaxis={'title': 'Step'}, yaxis={'title': title})
}, filename=os.path.join(path, title + '.html'), auto_open=False)