forked from VastlyBlank/5300-Ocelot
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BTreeNode.cpp
executable file
·436 lines (376 loc) · 13.9 KB
/
BTreeNode.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
#include <cstring>
#include "BTreeNode.h"
using namespace std;
/************************
* BTreeNode base class *
************************/
BTreeNode::BTreeNode(HeapFile &file, BlockID block_id, const KeyProfile& key_profile, bool create)
: block(nullptr), file(file), id(block_id), key_profile(key_profile) {
if (create) {
this->block = file.get_new();
this->id = this->block->get_block_id();
} else {
this->block = file.get(block_id);
}
}
BTreeNode::~BTreeNode() {
delete this->block;
this->block = nullptr;
}
void BTreeNode::save() {
this->file.put(this->block);
}
// Get the record and turn it into a block ID.
BlockID BTreeNode::get_block_id(RecordID record_id) const {
Dbt *dbt = this->block->get(record_id);
BlockID block_id = *(BlockID *)dbt->get_data();
delete dbt;
return block_id;
}
// Get the record and turn it into a Handle.
Handle BTreeNode::get_handle(RecordID record_id) const {
Dbt *dbt = this->block->get(record_id);
BlockID handle_block_id = *(BlockID *)dbt->get_data();
RecordID handle_record_id = *(RecordID *)((char*)dbt->get_data() + sizeof(BlockID));
delete dbt;
return Handle(handle_block_id, handle_record_id);
}
// Get the record and turn it into a KeyValue.
KeyValue *BTreeNode::get_key(RecordID record_id) const {
Dbt *dbt = this->block->get(record_id);
char *bytes = (char*)dbt->get_data();
KeyValue *key_value = new KeyValue();
Value value;
uint offset = 0;
for (auto const& data_type: this->key_profile) {
value.data_type = data_type;
if (data_type == ColumnAttribute::DataType::INT) {
value.n = *(int32_t*)(bytes + offset);
offset += sizeof(int32_t);
} else if (data_type == ColumnAttribute::DataType::TEXT) {
uint16_t size = *(uint16_t *)(bytes + offset);
offset += sizeof(uint16_t);
char buffer[DbBlock::BLOCK_SZ];
memcpy(buffer, bytes+offset, size);
buffer[size] = '\0';
value.s = std::string(buffer); // assume ascii for now
offset += size;
} else if (data_type == ColumnAttribute::DataType::BOOLEAN) {
value.n = *(uint8_t*)(bytes + offset);
offset += sizeof(uint8_t);
} else {
throw DbRelationError("Only know how to unmarshal INT, TEXT, or BOOLEAN");
}
key_value->push_back(value);
}
delete dbt;
return key_value;
}
// Convert block_id into bytes.
Dbt *BTreeNode::marshal_block_id(BlockID block_id) {
char *bytes = new char[sizeof(BlockID)];
Dbt *dbt = new Dbt(bytes, sizeof(BlockID));
*(BlockID *)bytes = block_id;
return dbt;
}
// Convert handle into bytes.
Dbt *BTreeNode::marshal_handle(Handle handle) {
char *bytes = new char[sizeof(BlockID) + sizeof(RecordID)];
Dbt *dbt = new Dbt(bytes, sizeof(BlockID) + sizeof(RecordID));
*(BlockID *)bytes = handle.first;
*(RecordID *)(bytes + sizeof(BlockID)) = handle.second;
return dbt;
}
// Convert KeyValue into bytes.
Dbt *BTreeNode::marshal_key(const KeyValue *key) {
char *bytes = new char[DbBlock::BLOCK_SZ]; // more than we need
uint offset = 0;
uint col_num = 0;
for (auto const& data_type: this->key_profile) {
Value value = (*key)[col_num];
if (data_type == ColumnAttribute::DataType::INT) {
if (offset + 4 > DbBlock::BLOCK_SZ - 4)
throw DbRelationError("index key too big to marshal");
*(int32_t*) (bytes + offset) = value.n;
offset += sizeof(int32_t);
} else if (data_type == ColumnAttribute::DataType::TEXT) {
u_long size = (uint16_t) value.s.length();
if (size > UINT16_MAX)
throw DbRelationError("text field too long to marshal");
if (offset + 2 + size > DbBlock::BLOCK_SZ)
throw DbRelationError("index key too big to marshal");
*(uint16_t*) (bytes + offset) = (uint16_t) size;
offset += sizeof(uint16_t);
memcpy(bytes+offset, value.s.c_str(), size); // assume ascii for now
offset += size;
} else if (data_type == ColumnAttribute::DataType::BOOLEAN) {
if (offset + 1 > DbBlock::BLOCK_SZ - 1)
throw DbRelationError("index key too big to marshal");
*(uint8_t*) (bytes + offset) = (uint8_t)value.n;
offset += sizeof(uint8_t);
} else {
throw DbRelationError("only know how to marshal INT, TEXT, or BOOLEAN for BTree index");
}
}
char *right_size_bytes = new char[offset];
memcpy(right_size_bytes, bytes, offset);
delete[] bytes;
Dbt *data = new Dbt(right_size_bytes, offset);
return data;
}
/******************************
* BTreeStat statistics block *
******************************/
BTreeStat::BTreeStat(HeapFile &file, BlockID stat_id, BlockID new_root, const KeyProfile& key_profile)
: BTreeNode(file, stat_id, key_profile, false), root_id(new_root), height(1) {
save();
}
BTreeStat::BTreeStat(HeapFile &file, BlockID stat_id, const KeyProfile& key_profile)
: BTreeNode(file, stat_id, key_profile, false), root_id(get_block_id(ROOT)), height(get_block_id(HEIGHT)) {
}
void BTreeStat::save() {
Dbt *dbt = marshal_block_id(this->root_id);
bool is_new = (this->block->size() == 0);
if (is_new)
this->block->add(dbt);
else
this->block->put(ROOT, *dbt);
delete[] (char*)dbt->get_data();
delete dbt;
dbt = marshal_block_id(this->height); // not really a block ID but it fits
if (is_new)
this->block->add(dbt);
else
this->block->put(HEIGHT, *dbt);
delete[] (char*)dbt->get_data();
delete dbt;
BTreeNode::save();
}
/*****************
* BTreeInterior *
*****************/
BTreeInterior::BTreeInterior(HeapFile &file, BlockID block_id, const KeyProfile& key_profile, bool create)
: BTreeNode(file, block_id, key_profile, create), first(0), pointers(), boundaries() {
if (!create) {
RecordIDs *record_id_list = this->block->ids();
RecordID i = 1;
for (auto j = record_id_list->size(); j > 0; j--) {
if (i == 1) {
// first pointer
this->first = get_block_id(i);
} else if (i%2 != 0) {
// pointer
this->pointers.push_back(get_block_id(i));
} else {
// key
KeyValue *key_value = get_key(i);
this->boundaries.push_back(key_value);
}
i++;
}
delete record_id_list;
}
}
BTreeInterior::~BTreeInterior() {
for (auto key_value: this->boundaries)
delete key_value;
this->boundaries.clear();
}
// Get next block down in tree where key must be.
BTreeNode *BTreeInterior::find(const KeyValue* key, uint depth) const {
BlockID down = this->pointers.back(); // last pointer is correct if we don't find an earlier boundary
for (uint i = 0; i < this->boundaries.size(); i++) {
KeyValue *boundary = this->boundaries[i];
if (*boundary > *key) {
if (i > 0)
down = this->pointers[i - 1];
else
down = this->first;
break;
}
}
if (depth == 2)
return new BTreeLeaf(this->file, down, this->key_profile, false);
else
return new BTreeInterior(this->file, down, this->key_profile, false);
}
// Save the pointers and boundaries in the correct order
void BTreeInterior::save() {
Dbt *dbt;
this->block->clear();
dbt = marshal_block_id(this->first);
delete[] (char *) dbt->get_data();
delete dbt;
for (uint i = 0; i < this->boundaries.size(); i++) {
// key
dbt = marshal_key(this->boundaries[i]);
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
// boundary
dbt = marshal_block_id(this->pointers[i]);
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
}
BTreeNode::save();
}
// Insert boundary, block_id pair into block.
Insertion BTreeInterior::insert(const KeyValue* boundary, BlockID block_id) {
Dbt *dbt;
bool inserted = false;
for (uint i = 0; i < this->boundaries.size(); i++) {
KeyValue *check = this->boundaries[i];
if (*boundary == *check) {
this->boundaries.insert(this->boundaries.begin() + i, new KeyValue(*boundary));
this->pointers.insert(this->pointers.begin() + i, block_id);
inserted = true;
break;
}
}
if (!inserted) {
// must go at the end
this->boundaries.push_back(new KeyValue(*boundary));
this->pointers.push_back(block_id);
}
dbt = marshal_block_id(block_id);
try {
// following is just a check for size (the save method will redo this in the right order)
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
dbt = marshal_key(boundary);
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
// that worked, so no need to split
save();
return BTreeNode::insertion_none();
} catch (DbBlockNoRoomError &e) {
delete[] (char *) dbt->get_data();
delete dbt;
// too big, so split
// create the sister
BTreeInterior *nnode = new BTreeInterior(this->file, 0, this->key_profile, true);
// only the pointer of the middle entry goes into the sister (as it's first pointer)
// the corresponding boundary is moved up to be inserted into the parent node
u_long split = this->boundaries.size() / 2;
nnode->first = this->pointers[split];
KeyValue *nboundary = this->boundaries[split];
Insertion ret(nnode->id, *nboundary);
delete nboundary;
// move half of the entries to the sister
for (u_long i = split + 1; i < this->boundaries.size(); i++) {
nnode->boundaries.push_back(this->boundaries[i]);
nnode->pointers.push_back(this->pointers[i]);
}
this->boundaries.erase(this->boundaries.begin() + split, this->boundaries.end());
this->pointers.erase(this->pointers.begin() + split, this->pointers.end());
// save everything
nnode->save();
this->save();
return ret;
}
}
/*************
* BTreeLeaf *
*************/
BTreeLeaf::BTreeLeaf(HeapFile &file, BlockID block_id, const KeyProfile& key_profile, bool create)
: BTreeNode(file, block_id, key_profile, create), next_leaf(0), key_map() {
if (!create) {
RecordIDs *record_id_list = this->block->ids();
RecordID i = 1;
for (auto j = record_id_list->size(); j > 0; j--) {
if (i == record_id_list->size()) {
// next leaf block
this->next_leaf = get_block_id(i);
} else if (i%2 == 0) {
// record i-1: handle, record i: key
KeyValue *key_value = get_key(i);
this->key_map[*key_value] = get_handle(i-1);
}
i++;
}
delete record_id_list;
}
}
BTreeLeaf::~BTreeLeaf() {
}
// Find the handle for a given key
Handle BTreeLeaf::find_eq(const KeyValue* key) const {
return this->key_map.at(*key);
}
// Save the key_map and next_leaf data in the correct order
void BTreeLeaf::save() {
Dbt *dbt;
this->block->clear();
for (auto const& item: this->key_map) {
// handle
dbt = marshal_handle(item.second);
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
// key
dbt = marshal_key(&item.first);
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
}
// next leaf pointer is final record
dbt = marshal_block_id(this->next_leaf);
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
BTreeNode::save();
}
// Insert key, handle pair into block.
Insertion BTreeLeaf::insert(const KeyValue* key, Handle handle) {
// check unique
if (this->key_map.find(*key) != this->key_map.end())
throw DbRelationError("Duplicate keys are not allowed in unique index");
Dbt *dbt;
dbt = marshal_handle(handle);
try {
// following is just a check for size (the save method will redo this in the right order)
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
dbt = marshal_key(key);
this->block->add(dbt);
delete[] (char *) dbt->get_data();
delete dbt;
// that worked, so no need to split
this->key_map[*key] = handle;
save();
return BTreeNode::insertion_none();
} catch (DbBlockNoRoomError &e) {
delete[] (char *) dbt->get_data();
delete dbt;
// too big, so split
// create the sister and put her to the right
BTreeLeaf *nleaf = new BTreeLeaf(this->file, 0, this->key_profile, true);
nleaf->next_leaf = this->next_leaf;
this->next_leaf = nleaf->id;
// move half of the entries to the sister
auto key_list = this->key_map; // make a copy of my key_map
key_list[*key] = handle; // add key/handle to it
u_long split = key_list.size() / 2; // figure out how many to keep (the rest move to nleaf)
this->key_map.clear(); // empty my list
u_long i = 0;
KeyValue boundary;
for (auto const& item: key_list) {
if (i < split) {
this->key_map[item.first] = item.second;
} else if (i == split) {
boundary = item.first;
nleaf->key_map[boundary] = item.second;
} else {
nleaf->key_map[item.first] = item.second;
}
i++;
}
nleaf->save();
this->save();
return Insertion(nleaf->id, boundary);
}
}