-
Notifications
You must be signed in to change notification settings - Fork 551
/
Copy pathstable_fluid.py
370 lines (300 loc) · 10.7 KB
/
stable_fluid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
# References:
# http://developer.download.nvidia.com/books/HTML/gpugems/gpugems_ch38.html
# https://github.com/PavelDoGreat/WebGL-Fluid-Simulation
# https://www.bilibili.com/video/BV1ZK411H7Hc?p=4
# https://github.com/ShaneFX/GAMES201/tree/master/HW01
import taichi as ti
import numpy as np
use_mgpcg = False # True to use multigrid-preconditioned conjugate gradients
res = 512
dt = 0.03
p_jacobi_iters = 160 # 40 for a quicker but less accurate result
f_strength = 10000.0
curl_strength = 0 # 7 for unrealistic visual enhancement
dye_decay = 0.99
force_radius = res / 3.0
debug = False
paused = False
ti.init(arch=ti.gpu)
if use_mgpcg:
from mgpcg_advanced import MGPCG # examples/mgpcg_advanced.py
mgpcg = MGPCG(dim=2, N=res, n_mg_levels=6)
_velocities = ti.Vector.field(2, float, shape=(res, res))
_intermedia_velocities = ti.Vector.field(2, float, shape=(res, res))
_new_velocities = ti.Vector.field(2, float, shape=(res, res))
velocity_divs = ti.field(float, shape=(res, res))
velocity_curls = ti.field(float, shape=(res, res))
_pressures = ti.field(float, shape=(res, res))
_new_pressures = ti.field(float, shape=(res, res))
_dye_buffer = ti.Vector.field(3, float, shape=(res, res))
_intermedia_dye_buffer = ti.Vector.field(3, float, shape=(res, res))
_new_dye_buffer = ti.Vector.field(3, float, shape=(res, res))
class TexPair:
def __init__(self, cur, nxt):
self.cur = cur
self.nxt = nxt
def swap(self):
self.cur, self.nxt = self.nxt, self.cur
velocities_pair = TexPair(_velocities, _new_velocities)
pressures_pair = TexPair(_pressures, _new_pressures)
dyes_pair = TexPair(_dye_buffer, _new_dye_buffer)
@ti.func
def sample(qf, u, v):
I = ti.Vector([int(u), int(v)])
I = max(0, min(res - 1, I))
return qf[I]
@ti.func
def lerp(vl, vr, frac):
# frac: [0.0, 1.0]
return vl + frac * (vr - vl)
@ti.func
def bilerp(vf, p):
u, v = p
s, t = u - 0.5, v - 0.5
# floor
iu, iv = ti.floor(s), ti.floor(t)
# fract
fu, fv = s - iu, t - iv
a = sample(vf, iu, iv)
b = sample(vf, iu + 1, iv)
c = sample(vf, iu, iv + 1)
d = sample(vf, iu + 1, iv + 1)
return lerp(lerp(a, b, fu), lerp(c, d, fu), fv)
@ti.func
def sample_minmax(vf, p):
u, v = p
s, t = u - 0.5, v - 0.5
# floor
iu, iv = ti.floor(s), ti.floor(t)
a = sample(vf, iu, iv)
b = sample(vf, iu + 1, iv)
c = sample(vf, iu, iv + 1)
d = sample(vf, iu + 1, iv + 1)
return min(a, b, c, d), max(a, b, c, d)
@ti.func
def backtrace_rk1(vf: ti.template(), p, dt: ti.template()):
p -= dt * bilerp(vf, p)
return p
@ti.func
def backtrace_rk2(vf: ti.template(), p, dt: ti.template()):
p_mid = p - 0.5 * dt * bilerp(vf, p)
p -= dt * bilerp(vf, p_mid)
return p
@ti.func
def backtrace_rk3(vf: ti.template(), p, dt: ti.template()):
v1 = bilerp(vf, p)
p1 = p - 0.5 * dt * v1
v2 = bilerp(vf, p1)
p2 = p - 0.75 * dt * v2
v3 = bilerp(vf, p2)
p -= dt * ((2 / 9) * v1 + (1 / 3) * v2 + (4 / 9) * v3)
return p
backtrace = backtrace_rk3
@ti.kernel
def advect_semilag(vf: ti.template(), qf: ti.template(), new_qf: ti.template(),
intermedia_qf: ti.template()):
for i, j in vf:
p = ti.Vector([i, j]) + 0.5
p = backtrace(vf, p, dt)
new_qf[i, j] = bilerp(qf, p)
@ti.kernel
def advect_bfecc(vf: ti.template(), qf: ti.template(), new_qf: ti.template(),
intermedia_qf: ti.template()):
for i, j in vf:
p = ti.Vector([i, j]) + 0.5
p = backtrace(vf, p, dt)
intermedia_qf[i, j] = bilerp(qf, p)
for i, j in vf:
p = ti.Vector([i, j]) + 0.5
# star means the temp value after a back tracing (forward advection)
# two star means the temp value after a forward tracing (reverse advection)
p_two_star = backtrace(vf, p, -dt)
p_star = backtrace(vf, p, dt)
q_star = intermedia_qf[i, j]
new_qf[i, j] = bilerp(intermedia_qf, p_two_star)
new_qf[i, j] = q_star + 0.5 * (qf[i, j] - new_qf[i, j])
min_val, max_val = sample_minmax(qf, p_star)
cond = min_val < new_qf[i, j] < max_val
for k in ti.static(range(cond.n)):
if not cond[k]:
new_qf[i, j][k] = q_star[k]
advect = advect_bfecc
@ti.kernel
def apply_impulse(vf: ti.template(), dyef: ti.template(),
imp_data: ti.ext_arr()):
for i, j in vf:
omx, omy = imp_data[2], imp_data[3]
mdir = ti.Vector([imp_data[0], imp_data[1]])
dx, dy = (i + 0.5 - omx), (j + 0.5 - omy)
d2 = dx * dx + dy * dy
# dv = F * dt
factor = ti.exp(-d2 / force_radius)
momentum = mdir * f_strength * dt * factor
v = vf[i, j]
vf[i, j] = v + momentum
# add dye
dc = dyef[i, j]
if mdir.norm() > 0.5:
dc += ti.exp(-d2 * (4 / (res / 15)**2)) * ti.Vector(
[imp_data[4], imp_data[5], imp_data[6]])
dc *= dye_decay
dyef[i, j] = dc
@ti.kernel
def divergence(vf: ti.template()):
for i, j in vf:
vl = sample(vf, i - 1, j).x
vr = sample(vf, i + 1, j).x
vb = sample(vf, i, j - 1).y
vt = sample(vf, i, j + 1).y
vc = sample(vf, i, j)
if i == 0:
vl = 0
if i == res - 1:
vr = 0
if j == 0:
vb = 0
if j == res - 1:
vt = 0
velocity_divs[i, j] = (vr - vl + vt - vb) * 0.5
@ti.kernel
def vorticity(vf: ti.template()):
for i, j in vf:
vl = sample(vf, i - 1, j).y
vr = sample(vf, i + 1, j).y
vb = sample(vf, i, j - 1).x
vt = sample(vf, i, j + 1).x
vc = sample(vf, i, j)
velocity_curls[i, j] = (vr - vl - vt + vb) * 0.5
@ti.kernel
def pressure_jacobi_single(pf: ti.template(), new_pf: ti.template()):
for i, j in pf:
pl = sample(pf, i - 1, j)
pr = sample(pf, i + 1, j)
pb = sample(pf, i, j - 1)
pt = sample(pf, i, j + 1)
div = velocity_divs[i, j]
new_pf[i, j] = (pl + pr + pb + pt - div) * 0.25
@ti.kernel
def pressure_jacobi_dual(pf: ti.template(), new_pf: ti.template()):
for i, j in pf:
pcc = sample(pf, i, j)
pll = sample(pf, i - 2, j)
prr = sample(pf, i + 2, j)
pbb = sample(pf, i, j - 2)
ptt = sample(pf, i, j + 2)
plb = sample(pf, i - 1, j - 1)
prb = sample(pf, i + 1, j - 1)
plt = sample(pf, i - 1, j + 1)
prt = sample(pf, i + 1, j + 1)
div = sample(velocity_divs, i, j)
divl = sample(velocity_divs, i - 1, j)
divr = sample(velocity_divs, i + 1, j)
divb = sample(velocity_divs, i, j - 1)
divt = sample(velocity_divs, i, j + 1)
new_pf[i,
j] = (pll + prr + pbb + ptt - divl - divr - divb - divt - div +
(plt + prt + prb + plb) * 2 + pcc * 4) * 0.0625
pressure_jacobi = pressure_jacobi_single
if pressure_jacobi == pressure_jacobi_dual:
p_jacobi_iters //= 2
@ti.kernel
def subtract_gradient(vf: ti.template(), pf: ti.template()):
for i, j in vf:
pl = sample(pf, i - 1, j)
pr = sample(pf, i + 1, j)
pb = sample(pf, i, j - 1)
pt = sample(pf, i, j + 1)
vf[i, j] -= 0.5 * ti.Vector([pr - pl, pt - pb])
@ti.kernel
def enhance_vorticity(vf: ti.template(), cf: ti.template()):
# anti-physics visual enhancement...
for i, j in vf:
cl = sample(cf, i - 1, j)
cr = sample(cf, i + 1, j)
cb = sample(cf, i, j - 1)
ct = sample(cf, i, j + 1)
cc = sample(cf, i, j)
force = ti.Vector([abs(ct) - abs(cb),
abs(cl) - abs(cr)]).normalized(1e-3)
force *= curl_strength * cc
vf[i, j] = min(max(vf[i, j] + force * dt, -1e3), 1e3)
def step(mouse_data):
advect(velocities_pair.cur, velocities_pair.cur, velocities_pair.nxt,
_intermedia_velocities)
advect(velocities_pair.cur, dyes_pair.cur, dyes_pair.nxt,
_intermedia_dye_buffer)
velocities_pair.swap()
dyes_pair.swap()
apply_impulse(velocities_pair.cur, dyes_pair.cur, mouse_data)
divergence(velocities_pair.cur)
if curl_strength:
vorticity(velocities_pair.cur)
enhance_vorticity(velocities_pair.cur, velocity_curls)
if use_mgpcg:
mgpcg.init(velocity_divs, -1)
mgpcg.solve(max_iters=10)
mgpcg.get_result(pressures_pair.cur)
else:
for _ in range(p_jacobi_iters):
pressure_jacobi(pressures_pair.cur, pressures_pair.nxt)
pressures_pair.swap()
subtract_gradient(velocities_pair.cur, pressures_pair.cur)
if debug:
divergence(velocities_pair.cur)
div_s = np.sum(velocity_divs.to_numpy())
print(f'divergence={div_s}')
class MouseDataGen(object):
def __init__(self):
self.prev_mouse = None
self.prev_color = None
def __call__(self, gui):
# [0:2]: normalized delta direction
# [2:4]: current mouse xy
# [4:7]: color
mouse_data = np.zeros(8, dtype=np.float32)
if gui.is_pressed(ti.GUI.LMB):
mxy = np.array(gui.get_cursor_pos(), dtype=np.float32) * res
if self.prev_mouse is None:
self.prev_mouse = mxy
# Set lower bound to 0.3 to prevent too dark colors
self.prev_color = (np.random.rand(3) * 0.7) + 0.3
else:
mdir = mxy - self.prev_mouse
mdir = mdir / (np.linalg.norm(mdir) + 1e-5)
mouse_data[0], mouse_data[1] = mdir[0], mdir[1]
mouse_data[2], mouse_data[3] = mxy[0], mxy[1]
mouse_data[4:7] = self.prev_color
self.prev_mouse = mxy
else:
self.prev_mouse = None
self.prev_color = None
return mouse_data
def reset():
velocities_pair.cur.fill(0)
pressures_pair.cur.fill(0)
dyes_pair.cur.fill(0)
gui = ti.GUI('Stable Fluid', (res, res))
md_gen = MouseDataGen()
while gui.running:
if gui.get_event(ti.GUI.PRESS):
e = gui.event
if e.key == ti.GUI.ESCAPE:
break
elif e.key == 'r':
paused = False
reset()
elif e.key == 'p':
paused = not paused
elif e.key == 'd':
debug = not debug
if not paused:
mouse_data = md_gen(gui)
step(mouse_data)
gui.set_image(dyes_pair.cur)
# To visualize velocity field:
# gui.set_image(velocities_pair.cur.to_numpy() * 0.01 + 0.5)
# To visualize velocity divergence:
# divergence(velocities_pair.cur); gui.set_image(velocity_divs.to_numpy() * 0.1 + 0.5)
# To visualize velocity vorticity:
# vorticity(velocities_pair.cur); gui.set_image(velocity_curls.to_numpy() * 0.03 + 0.5)
gui.show()